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Abstract

Programs are widely used in content creation. For example, artists design shader programs

to procedurally render scenes and textures, while musicians construct “synth” programs to

generate electronic sound. While the generated content is typically the focus of attention, the

programs themselves offer hidden potential for transformations that can support untapped

applications. In this dissertation, we will discuss four projects that exploit the program

structure to automatically apply machine learning or math transformations as if they were

manually designed by domain experts. First, we describe a compiler-based framework with

novel math rules to extend reverse mode automatic differentiation so as to provide accurate

gradients for arbitrary discontinuous programs. The differentiation framework allows us

to optimize procedural shader parameters to match target images. Second, we extend the

differentiation framework to audio “synth” programs so as to match the acoustic properties of

a provided sound clip. We next propose a compiler framework to automatically approximate

the convolution of an arbitrary program with a Gaussian kernel in order to smooth the

program for visual antialiasing. Finally, we explore the benefit of program representation

in deep-learning tasks by proposing to learn from program traces of procedural fragment

shaders – programs that generate images. In each of these settings, we demonstrate the

benefit of exploiting the program structure to generalize hand-crafted techniques to arbitrary

programs.
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Chapter 1

Introduction

Programs are almost everywhere in our daily lives, such as in our cars, mobile phones, or TVs.

In the realm of content creation, program representations are also frequently used as part

of the design process. For example, artists design shader programs to procedurally render

scenes and textures (Figure 1.1), while musicians construct “synth” programs to generate

electronic sound. Even less experienced programmers or non-programmers could also utilize

visual design or visual programming environments such as Adobe Substance Designer or

Max/MSP to programmatically describe the content creation process.

Typically, the generated content is the focus of attention while the programmatic synthe-

sis process is overlooked and viewed as a black box. For example, if a photographer purchases

Adobe Photoshop to retouch their photos, they will only have access to the elements and

parameters provided by the software executable, but not the program that compiles to the

executable. However, the actual program that describes the algorithm offers hidden potential

for transformations that can support untapped applications, such as optimizing the original

pipeline, or adding customized features.

Furthermore, even with the program representation, manually modifying the program

requires both manual effort as well as domain expertise to prevent bugs and errors. For

example, to improve the runtime performance of a program, a domain expert needs to

14



Figure 1.1: Example outputs from shader programs that procedurally render the scenes.

manually make optimization decisions such as which parts of the program can be parallelized,

or which memory consumption can be preallocated. The manually optimized program may

also suffer from subtle bugs such as race conditions in multithreading, which again requires

additional manual effort to identify and fix.

We define a program transformation as a process f → g that constructs the output pro-

gram g from a given input program f for tasks such as optimizing f in terms of runtime and

memory footprint or generating the gradient of f . We further define an automatic compiler

framework as a pipeline that automatically applies a certain type of program transforma-

tion to an arbitrary input program where the solution typically resembles the expertise of a

human expert but without having to spend the manual labor. In this dissertation, we will

explore a variety of tasks and propose automatic compiler frameworks that both exploit the

program representation and automate the program transformation at the same time. We

further demonstrate the applicability of these frameworks on shader programs.

15



1.1 Motivation

Researchers have leveraged the program representation to design automatic compiler frame-

works for various tasks, such as shader level-of-detail [54], and inverse engineering the shape

modeling [81]. More generally, automatic differentiation (AD) analyzes the algebraic compu-

tation to generate symbolic gradients for arbitrary programs [12], and TEG further extends

AD to integrals over a limited set of discontinuous programs [10]. The program structure

also helps researchers to develop automatic frameworks to efficiently schedule the compu-

tation [120, 2], as well as translate programs to other programming languages with verified

correctness [3].

This section further motivates the benefit of exploiting program representations with a

detailed discussion on a concrete example: differentiating a continuous program. We first

formally define the transformation, then discuss three different approaches: assuming the

program is a black box; manually deriving the solution from the program representation;

and finally, automatically applying the transformation through a compiler framework.

Programs that carry out floating point computation can be viewed as math functions.

Such programs are frequently used for generating visual and audio content, because images

and audio signals are a collection of floating point samples. Differentiating the program

can be essential for many tasks such as gradient-based optimization in machine learning.

Formally, we define the differentiation transformation in Equation 1.1 for a continuously

differentiable input program f . For the motivating examples throughout this chapter, we

assume f is a function of n real parameters θ1, ..., θn.

Diff(f(θ⃗)) := ∇f = [
∂f

∂θ1
, ...,

∂f

∂θn
] (1.1)

Black Box Approach. Finite difference (FD) is the general approach for differentiating a

math function without access to the computation process. It simply evaluates the program

with a slight offset to the input parameter that we wish to differentiate with respect to.

16



While being general and easy to compute, it has two major disadvantages. Firstly, FD

scales linearly with the number of input parameters. If we wish to differentiate with respect

to n parameters, FD requires the black box function to be evaluated O(n) times. This may

introduce severe overhead for large n, such as a neural network with millions of parameters.

Additionally, there is a dilemma in choosing the amount of the offset (step size) applied

to the input parameter. A larger step size oversmoothes the original function and leads

to inaccurate gradient approximation, whereas a smaller step size may also amplify noise

and introduce numerical instabilities due to floating point precision. As a result, choosing

a suitable step size that trades off both concerns can be challenging, and usually requires

several steps of trial and error.

Manual Solution. Assuming the function is continuously differentiable, its analytic gra-

dient can be derived using the chain rule and basic calculus. While theoretically correct,

manually deriving the solution for hundreds or thousands of lines of a program would be

tedious and time-consuming, and is error-prone both during the math derivation as well as

coding.

Automatic Framework. Automatic Differentiation (AD) [12] is a popular framework

that recursively applies calculus rules to automatically generate a symbolic gradient for an

arbitrary program. When computed in reverse mode, which in machine learning contexts is

often referred to as backpropagation, the runtime for the AD-generated gradient is agnostic

to the number of parameters n, therefore having O(1) time complexity with respect to those

parameters. Because of being efficient and automatic, AD is widely used in machine learning

applications [13], and is integrated into many libraries, such as JAX [44], TensorFlow [1],

and PyTorch [103].

Similar to the AD example, many other program transformation tasks could draw in-

spiration from their manual solutions as well to develop an automatic compiler framework.
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However, straightforwardly generalizing the manual expertise may still be challenging, which

will be detailed in the next section.

1.2 Challenges for Automatic Compiler Frameworks

Generally, building an automatic compiler framework requires a set of rules to modify the

compute graph of the program that is scalable for arbitrarily complicated programs. For

example, the Automatic Differentiation (AD) framework discussed in Section 1.1 utilizes a

set of recursive rules generalized from its manual solution: the chain rule in calculus.

Unfortunately, such rules cannot always be easily generalized from manual solutions.

This could be because the manual solution heavily relies on the expert’s domain expertise

and experience, such as how to tile a loop for better memory locality [111]. Therefore, they

cannot be easily abstracted into compiler rules. Additionally, for math transformations like

integration, simple closed-form solutions may not exist at all for the majority of functions,

hence the manual solution may not be applicable even with the presence of an expert.

As a result, a major challenge in developing an automatic compiler framework is to

design compiler rules that are more general and have similar performance to the manual

solutions. For example, if we can enumerate the space of possible program transformations,

we could use a search strategy to find the transformation that minimizes a loss proxy. The

loss usually characterizes the goal, such as runtime or memory footprint. As an alternative,

approximation rules can also be designed based on the manual solution to trade off scalability

with accuracy.

The remainder of this section discusses three program transformation examples where

state-of-the-art methods fail to generalize to arbitrary programs. Similar to Section 1.1, we

will first present the black box and manual solution for each, followed by a discussion of the

challenges of the automatic framework.
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Figure 1.2: Target image for Program 1.1. What setting for the parameters (center and
radius) best matches this target? An optimization process that searches for these parameters
would benefit from an accurate gradient, but conventional AD methods fail in this case.

1.2.1 Automatic Differentiation at Discontinuities

In Section 1.1, we describe automatic differentiation (AD), which is a powerful compiler

framework to generate the gradient program for continuously differentiable programs. How-

ever, conventional AD methods ignore discontinuities, which are essential in various ap-

plications such as visibility tests in rendering, or change of state in physics simulations.

Informally, program discontinuities are sudden changes to program outputs caused by in-

finitesimal changes to program inputs. For example, the if / else branch could cause a

discontinuity. More formally, we can consider the program as a math function of all of its

real arguments and define continuity in the usual manner from real analysis [139].

The gradient generated by traditional AD usually struggles to optimize parameters con-

trolling the discontinuities. For example, Program 1.1 demonstrates a program that draws

a circle. It uses an if / else branch to test whether a certain pixel is inside or outside the

circle, then draws the color accordingly. However, if we want to optimize the radius and

circle position to best match the target image in Figure 1.2, using the gradient from the AD

framework will not work, because its gradients with respect to all three parameters (cx, cy,

r) are always zero. Therefore, we need new methods other than the traditional chain rule to

correctly differentiate programs with discontinuities.
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Program 1.1: A discontinuous program that draws a circle.

def c i r c l e ( cx , cy , r ) :
u , v = g e t p i x e l c o o r d ( )
i f ( ( u − cx ) ∗∗ 2 + ( v − cy ) ∗∗ 2) ∗∗ 0 .5 < r :

out = 1
else :

out = 0
return out

Mathematically, the jump discontinuity generated by the if /else branching can be char-

acterized as the Heaviside step function, whose gradient is the Dirac delta distribution.

Informally in the engineering context, the Dirac delta evaluates to infinity at the discontinu-

ity, and is 0 everywhere else. It is obvious that the Dirac delta is merely an analytic notation

and cannot be directly evaluated using a program: it evaluates to infinity at a measure zero

discontinuity. Therefore, in engineering, a general approach is to convolve the gradient with

a smoothing kernel ϕ to ensure that the gradient at the discontinuity can be sampled as a

finite value with nonzero probability. Further, we can typically commute the differentiation

and integration operator. 1 In rendering this process is also called pre-filtering. We formally

characterize the process of differentiating the pre-filtered program f in Equation 1.2.

DiffD(f ;ϕ) := ∇(f ∗ ϕ) = [
∂

∂θ1
(f ∗ ϕ), ...,

∂

∂θn
(f ∗ ϕ)] (1.2)

Black Box Approach. Finite difference (FD) is still able to account for discontinuities

because it relies on multiple evaluation sites, therefore naturally capturing the sudden change

in function value. However, as we have discussed in Section 1.1, FD is generally not preferred

because of its inefficiency (O(n) runtime) and difficulty in choosing a proper step size. The

1In general, commuting is not allowed by the Leibniz integral rule because the integrand is discontinuous.
However, in the engineering context, commuting is usually valid when ∇f can be expressed in terms of
the Dirac delta functions. Further, we will prove in Section 2.8.4.1 that commuting is valid for the set of
programs this dissertation focuses on.
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latter becomes especially challenging with the presence of discontinuities: a smaller step size

may fail to sample the discontinuities, while a larger step size overly smooths the gradient,

or even worse, it may have crossed multiple discontinuities, generating a hard-to-interpret

and inaccurate result.

Manual Solution. There are generally two approaches for math experts to manually de-

rive the gradient of the discontinuous program f . Firstly, they could utilize various Dirac

delta related properties to analytically convert ∇f into a closed-form expression with the

Dirac delta notation [69, 71]. Alternatively, they can cast the problem into an integral over

the discontinuous program f . Examples include pre-filtering as in Equation 1.2, or inte-

grating over a 3D hemisphere for physics-based rendering, or integrating over the trajectory

path for physics simulation. After that, many math techniques such as the Leibniz integral

rule, the Reynold transport theorem, or reparameterization can be applied to remove the

discontinuity out of the differentiation operator [76, 156]. However, deriving the gradient

using either approach would require a math expert to make program-specific decisions such

as which theorems to apply to which part of the equation. This heavily relies on the experts’

imagination and domain expertise, and there is no guarantee a good manual solution can be

easily found for any arbitrary program.

Automatic Framework. Because the manual solutions require case-by-case decisions, it

is not feasible to directly generalize math rules for the compiler as in the traditional AD

framework. A naive approach may directly apply the chain rule in AD with the additional

notation of the Dirac delta. However, the chain rule easily fails even under simple counterex-

amples (Section 2.4.2.2). Fortunately, we can summarize scenarios when the chain rule fails

and design novel counterparts of the calculus rules that correctly account for the disconti-

nuities. In Chapter 2 we will discuss a framework that allows efficient reverse-mode AD on

discontinuous programs.
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1.2.2 Automatic Convolution

In Equation 1.2, we introduce the convolution notation but merely use it as an intermediate

representation that helps to conveniently evaluate the gradient of discontinuous programs:

the convolution does not have to be directly evaluated. Nevertheless, convolution itself is

of interest to many applications. Specifically, if ϕ is a known smoothing kernel (such as the

Gaussian or boxcar function), its convolution with an arbitrary program f removes sharp

or high-frequency textures from f . This could be beneficial for rendering tasks such as

antialiasing, or robotics tasks like path smoothing. We formally characterize this process in

Equation 1.3.

Conv(f ;ϕ) := f ∗ g =

∫
Rd

f(θ⃗0 − θ⃗)ϕ(θ⃗)dθ⃗ (1.3)

Black Box Approach. Without access to the program representation, convolution can

still be estimated through numerical integration methods such as Monte Carlo sampling

[110]. To evaluate the convolution integral at θ⃗0, it samples θ⃗ from the distribution of ϕ and

averages the evaluations of f(θ⃗0 − θ⃗). In rendering, this is also known as supersampling.

However, the sampling approach suffers a tradeoff between accuracy and efficiency: it is

noisy at low sample counts, but the runtime scales linearly as the number of samples grows,

leading to expensive computation for highly accurate estimates.

Manual Solution. In a few cases, Equation 1.3 may also have closed-form expressions

for direct evaluation. However, this requires an expert to manually apply various calculus

techniques, such as decomposing the program f into elementary functions, or applying in-

tegration by parts. Similar to differentiating a discontinuous program in Section 1.2.1, no

general rule has been established for converting the convolution integral to a closed-form

expression, resulting in a tedious trial-and-error derivation process. Further, the closed-form
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expression may not exist for the majority of programs f , limiting the applicability of manual

derivations.

Automatic Framework. Similar to Section 1.2.1, it is difficult to directly generalize a

set of compiler rules from the manual solutions. Nevertheless, we will make a connection

between the probability theory and the convolution in Equation 1.4, and point out possible

approximations it may lead to. Because we assume ϕ in Equation 1.3 is a known non-

negative kernel, without loss of generality, we can view ϕ as a probability density function

(pdf) because it can always be decomposed into the multiplication of a pdf and a constant

scale factor. Equation 1.4 further expands Equation 1.3 and states that when evaluating

the convolution integral on θ⃗0, the result can be viewed as the expected value for a random

variable Y = f(Θ), where Θ is a random variable as well whose probability density is

conditioned on θ⃗0: pdfΘ(θ⃗) = ϕ(θ⃗0 − θ⃗). Now that both the input and output of f become

random variables Θ and Y, a natural extension is to view every intermediate computation

within the program f as a random variable as well. Further, if the kernel ϕ has some

nice properties such as being unimodal, we may be able to approximate the intermediate

and output random variables simply using their first and second-order statistics (i.e. mean

and variance). In Chapter 5, we will present a compiler framework that automatically

approximates the convolution integral based on the random variable observation.

Conv(f ; g)(θ⃗0) =

∫
Rd

f(θ⃗0 − θ⃗)ϕ(θ⃗)dθ⃗

=

∫
Rd

f(θ⃗)ϕ(θ⃗0 − θ⃗)dθ⃗

=

∫
Rd

f(θ⃗)pdfΘ(θ⃗; θ⃗0)dθ⃗

=E[f(Θ)]

pdfΘ(θ⃗) =ϕ(θ⃗0 − θ⃗)

(1.4)
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1.2.3 Identifying Input Features for Deep Learning

Sections 1.2.1 and 1.2.2 discuss explicit program transformations for the differentiation and

convolution tasks: the output program g is constructed by deterministically applying a set

of rules to modify the computation process of input program f . As an alternative, a task can

be learned by deep learning methods: using a black box neural network as a proxy for the

output program g. While most network model parameters are learned by gradient descent,

some manual choices have to be made before training, such as network architectures, loss

functions, and what input features to feed to the model. Specifically, the input features

are often picked to be correlated with an input data generation process f . If f is not a

program, but rather a sampling process from the natural images, the input features could

simply be the output of f , which samples a natural image from the training set. In other

cases where all or part of f can be programmatically described, researchers have explored

designing input features based on the computation of f to benefit the learning process. This

section discusses techniques that identify these beneficial input features, as well as how they

can be automated.

Black Box Approach. As discussed, in this case, the input features can simply be the

output of f , such as the RGB image when visual data is sampled by f [57, 47, 104].

Manual Solution. If the data generation process f is known, machine learning researchers

could manually design additional input features. Because the output of f is almost always

a part of the input features to the learning model, we describe any additional hand-crafted

features as auxiliary input features. For example, when learning shading or denoising from

a traditional rendering pipeline f , features from the G-buffer or the Z-buffer, such as sur-

face normal, albedo, and specularity could be used as auxiliary input features to improve

learning performance [92, 132, 21]. Similarly, when learning fluid super-resolution from a

low-resolution fluid simulation f [146], the fluid velocity and vorticity computed within f
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could be helpful as auxiliary features. Further, the input features could be constructed from

additional computations that are not part of the data generation process f , such as the

positional encoding in NeRF [82] based methods.

Automatic Framework. The manually designed features vary greatly among applications

and domains, and cannot be generalized to arbitrary programs. Nevertheless, we can observe

that it is easier to generate a superset of beneficial auxiliary input features. One such

example is the program trace of f . In this dissertation we refer to the trace as all the

intermediate values computed from executing f . The program trace inherently includes many

auxiliary features manually picked by experts in specific applications, such as G and Z buffers

for rendering or the internal states for fluid simulation. Even when the auxiliary features

are crafted by a separate computation, such as the positional encoding, the program trace

may already include similar high-frequency features that could be equivalently beneficial for

learning. Because the program trace is a superset of potentially beneficial auxiliary features,

it also contains redundant features that are not needed for learning. However, we could defer

the decision of picking beneficial features to the learning model, therefore automating the

entire pipeline. Chapter 6 describes a framework that explores the idea of using the program

trace as auxiliary features and shows its applicability on a variety of learning tasks.

1.3 Contribution

The contributions of this dissertation include three novel compiler tools for automatic pro-

gram transformation to arbitrary programs, and their applications in the domain of visual

and audio programs. First, we present an automatic differentiation framework to differenti-

ate discontinuities and apply it to both shader and audio applications. Second, we develop

an automatic convolution framework to approximate the program’s convolution with a Gaus-

sian kernel. Third, we extend the compiler framework to deep-learning tasks to help learners

explore the additional information from the program trace.
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Automatic Differentiation for Discontinuous Programs. Chapter 2 presents a gen-

eral math framework Aδ that allows reverse-mode AD to discontinuous programs.

Optimizing Discontinuous Shader Applications. We demonstrate that the Aδ frame-

work helps differentiate procedural shader programs where discontinuities are vital for de-

termining object silhouette or visibility. Specifically, in Chapter 3, we optimize unknown

parameters of the shader program to match a target image. This allows users to inter-

actively modify and animate the shader, which would otherwise be cumbersome in other

representations such as triangle meshes or vector graphics.

Optimizing Discontinuous Audio Synth Applications. We give another example

where differentiating discontinuities is important for the optimization task. In Chapter 4,

we further extend the Aδ framework to differentiate audio synth programs to match a target

sound signal, such as musical instruments or cartoon effects.

Approximate Program Smoothing. Besides differentiation, we also develop a com-

piler framework for automatic convolution. Chapter 5 presents a compiler framework to

approximate the program’s convolution with a Gaussian kernel, therefore achieving program

smoothing. We demonstrate its applicability on antialiasing procedural shader programs.

Learning from Program Trace. We further demonstrate the program representation

can help deep learning approaches as well. Chapter 6 develops a framework that allows

learning tasks to automatically collect and learn from the program trace, and investigate

its effectiveness under a variety of applications that includes both traditional visual tasks as

well as simulation tasks.

The research described in this dissertation has appeared in the following publications:

• Chapters 2 and 3: Aδ: Autodiff for Discontinuous Programs - Applied to Shaders [149].

https://pixl.cs.princeton.edu/pubs/Yang_2022_AAF/index.php
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• Chapter 4: White-Box Automatic Synthesizer Programming (under review) [151].

• Chapter 5: Approximate Program Smoothing Using Mean-Variance Statistics, with

Application to Procedural Shader Bandlimiting [148].https://yyuting.github.io/

docs/eg_2018.html

• Chapter 6: Learning from Shader Program Traces [150]. https://pixl.cs.

princeton.edu/pubs/Yang_2022_LFS/index.php

Project details can also be found in Yuting Yang’s personal website. https://yyuting.

github.io/
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Chapter 2

Automatic Differentiation for

Discontinuous Programs

Over the last decade, automatic differentiation (AD) has profoundly impacted graphics and

vision applications — both broadly via deep learning and specifically for inverse rendering.

However, traditional AD methods always ignore gradients at discontinuities, instead treating

functions as continuous. This raises many challenges for various applications. For example,

rendering algorithms intrinsically rely on discontinuities as they are crucial at object silhou-

ettes. And in general, discontinuities are vital for any branching operation. Researchers have

proposed fully-automatic differentiation approaches for handling discontinuities by restricting

to affine functions, or semi-automatic processes restricted either to invertible functions or to

specialized applications like vector graphics. This chapter instead describes a compiler-based

approach to extend reverse mode AD to accept arbitrary programs involving discontinuities.

Our novel gradient rules generalize differentiation to work correctly, assuming there is a sin-

gle discontinuity in a local neighborhood, by approximating the pre-filtered gradient over a

box kernel oriented along a 1D sampling axis. We further propose two methods to validate

our gradient approximation. We establish a theoretical error bound for a relatively broad
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Figure 2.1: Our framework takes as input an arbitrary program expressed by our DSL
(§ 2.4.1), and approximates the gradient by pre-filtering a 1D box kernel along sampling
axes (§ 2.4.2). Approximations along multiple sampling axes are later combined (§ 2.5.1).
Finally, we formally prove our gradient approximation is first-order correct in § 2.7 and 2.8,
and we also design a quantitative error metric (§ 2.9) to evaluate any gradient program
empirically.

class of programs, and also propose a quantitative error metric to numerically evaluate the

approximation error for any program.

2.1 Overview

Many graphics and vision optimization tasks rely on gradients. When outputs can be ex-

pressed as explicit functions of given parameters, automatic differentiation (AD) can provide

gradients. However, most AD methods assume that such functions are continuous with re-

spect to the input parameters, and produce incorrect gradients at discontinuities resulting

from if/else branches, for example. Such AD-based methods, therefore, struggle to optimize

functions involving factors like object boundaries, visibility, and ordering.

In certain cases, the gradient at a discontinuity can be expressed analytically. For exam-

ple, the derivative of a step function is the Dirac delta distribution (informally, infinity at the

discontinuity and zero elsewhere). Likewise, the gradient of certain pre-filtered discontinuous

functions can be derived analytically as a convolution with Dirac deltas.1 Building on these

properties, we propose a framework and compiler we call Aδ for automatic differentiation of

1Technically, such Dirac delta distributions act on a test function.
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programs – including proper differentiation of the discontinuities. We develop gradient rules

for efficient automatic differentiation with respect to input parameters that discontinuous

operators depend on, which we call Dirac parameters because their partial derivatives often

contain Dirac deltas. (They are defined formally in Section 2.4.1.)

Graphics researchers have derived several application-specific solutions for differentiating

Dirac parameters, targeting specialized domains such as spline shapes for vector graphics [71]

or triangle meshes rendered in a path tracer [9, 69, 76]. While they address these specific

domains, they are not readily adapted to arbitrary functions. TEG [10] on the other hand,

systematically differentiates parametric discontinuities on a limited scope of programs. Their

system correctly handles discontinuities that are represented by differentiable and invertible

functions, and is only fully automatic when the discontinuities are represented by affine

transformations: in all other cases, the inversion or reparameterization needs to be provided

by the programmer. This leaves out many real-world programming patterns such as disconti-

nuity compositions, or discontinuities represented by functions that are either not invertible

or for which the programmer cannot easily write down the inverse.

Similarly to TEG, our method also targets general discontinuous programs, written in

our domain specific language (DSL). But instead of proving correctness under a limited set

of programs, we make several assumptions that allow us to handle a broader set of programs.

Our compiler approximates the pre-filtered gradient over a 1D box kernel, where we denote

the kernel orientation as the sampling axis, under three assumptions:

(A1) There is at most one discontinuity between each sample and its nearest neighbor along

the sampling axis (a sample pair).

(A2) Function values and some partial derivatives within the computation at a sample pair

can be used to estimate gradients at locations between the pair.

(A3) Most discontinuities can be projected to the sampling axis.
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Intuitively, A1 can be easily achieved in most locations with a high enough sample frequency.

Similarly, A2 also becomes more applicable for higher sample frequencies because continuous

functions expressible in our DSL are locally Lipschitz continuous. A2 is the key that allows

us to efficiently expand to a larger set of programs. Because we can use function and gradient

values at nearby sample locations as proxies, we do not need extra samples to locate the

discontinuity, or limit the discontinuity to certain types of functions that can be easily

inverted. Additionally, as will be shown in Section 2.3, A2 also allows efficient reverse-mode

AD, because gradients of discontinuities with respect to the sampling axis can be easily

approximated by finite differences, which can be further transformed into the gradient with

respect to other parameters using properties of Dirac delta functions. Lastly, A3 allows us

to evaluate most discontinuities using minimal samples: along the sampling axis. In case

one sampling axis is not sufficient to observe every discontinuity, our framework can also

combine approximations from multiple sampling axes.

Figure 2.1 shows an overview of our framework. This chapter primarily contributes a

set of approximate derivative rules that can be applied to a large set of general programs.

We show for a subset of programs, the approximation error is bounded by a first-order

term scaled by the size of the pre-filtering kernel. We also propose a novel error metric to

quantitatively evaluate the gradient approximation on any program.

2.2 Related Work

Automatic differentiation of parametric discontinuities. TEG [10] systematically

differentiates integrals with discontinuities. When the program is posed as integrals of dis-

continuous functions, TEG correctly differentiates the program by eliminating Dirac deltas

residing within the integrals. The remaining integral dimensions are sampled and differen-

tiated using the trapezoidal rule. However, the set of programs TEG can correctly handle

is restricted. To correctly eliminate Dirac deltas, the discontinuities are limited to be rep-
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Table 2.1: Comparison between ours and related work on differentiating discontinuous pro-
grams: traditional Auto-Differentiation (AD); finite difference (FD); TEG [10]; differentiable
vector graphics (DVG) [71] and differentiable path tracers (DPT) [9, 76, 69]. We compare
these methods under four criteria: whether they can sample discontinuities, whether the
method can reduce to AD in the absence of discontinuities, time complexity in terms of how
many evaluations of the original program is needed as a function of parameter dimension
n, and what set of programs each method can handle. Our method handles every program
expressible in our DSL (Section 2.4.1); AD and finite difference work with arbitrary pro-
grams; TEG works with a limited subset of programs whose discontinuities are represented
by diffeomorphisms (Diff); while task-specific methods DVG and DPT only apply to their
specific tasks: vector graphics (VG) and path tracer (PT) respectively.

Taxonomy Ours AD FD TEG DVG DPT

Discontinuities ✓ × ✓ ✓ ✓ ✓
Reduce to AD ✓ ✓ × ✓ ✓ ✓

Time Complexity O(1) O(1) O(n) O(1) O(1) O(1)
Generality DSL All All Diff VG PT

resented by differentiable, invertible functions, and TEG can only automatically handle

the affine case. All other cases rely on programmer-provided inversion or reparameteri-

zation. This restriction limits the set of programs that can benefit from their automatic

pipeline: composition of discontinuities and non-invertible functions are excluded entirely,

and non-affine invertible functions require extra manual effort to define the inverse for each of

them. Unlike TEG, our method approximates the gradient of discontinuous programs, with

a weaker correctness guarantee of the error being first order in the step size for sufficiently

small steps, and we show this theoretical result applies to a larger set of programs. Moreover,

Chapter 3 shows empirically that our method can also handle a larger set of shaders than

the set we analyze theoretically – and which is expressive enough to reconstruct real-world

images found online. Table 2.1 compares our method with TEG and other baselines such as

traditional AD ([90, 96]) and finite difference, as well as application-specific methods that

directly differentiate discontinuities, discussed next.

Application-specific differentiation of parametric discontinuities. Many application-

specific methods differentiate pre-filterings of the discontinuous functions. For example, in
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the domain of vector graphics [71], path tracers [157, 69, 9, 76], and other physics-based

renderers [159], specialized rules are derived analytically, and algorithms are also designed

for efficiently carrying out the computation of these specialized gradients [154, 95, 155].

While these manually derived rules are correct and efficient for the particular application,

they are limited to a small subset of programs. Our method, on the other hand, is general

and can be applied to arbitrary programs expressible in the syntax of our DSL.

Replacing discontinuities with continuous proxies. Another strategy for differenti-

ating parametric discontinuities is to use a process such as smoothing to replace the origi-

nal function with a continuous proxy before taking the gradient. Although similar to pre-

filtering, these methods only differentiate the proxy, and do not attempt to sample disconti-

nuities directly. Soft rasterizer [73] replaces step discontinuities with sigmoids and builds a

continuously differentiable path tracer, but is application-specific and has no formal guaran-

tees for the approximation. Another approach, mean-variance program smoothing [148], can

correctly smooth out a certain class of procedural shader programs, and briefly discusses us-

ing AD to derive one approximation term; but it does not investigate differentiation further

and is unable to scale to complicated programs. In contrast, our method applies to a broader

set of programs, and we show our approximation has low error both by mathematical proof

and by evaluating under a quantitative metric. Researchers have also investigated a variety

of strategies for converting complicated functions with neural proxies, for example: approx-

imating a “black-box” ISP camera pipeline [130], using neural textures or neural implicit

3D representation for differentiable rendering [128, 102, 94, 123, 59], and using NeRF as a

surrogate for geometry and reflectance [82, 79]. These representations are inherently differ-

entiable, and leverage all of the recent progress in neural representations, but the resulting

representation is a network that is difficult to interpret and manipulate in general ways. In

contrast, our approach provides gradients in the original program representation (and does

so quickly relative to the training of most neural methods).
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2.3 Motivation

We begin by describing a simple example: f(x, θ) = H(x + θ). Here x is a sampling axis

along which we sample discontinuities, and which we will discuss in more depth shortly; and

θ is a parameter for which we wish to obtain a derivative. H is a Heaviside step function

that evaluates to 1 when x + θ ≥ 0, and 0 otherwise. Mathematically, the gradient of

this step function is a Dirac delta distribution δ, which informally evaluates to +∞ at the

discontinuity, 0 otherwise, and integrates over the reals to one. In real-world applications,

differentiating discontinuous functions is usually approximated by first pre-filtering with a

smoothing kernel to avoid the need to exactly sample the discontinuity, which is measure

zero. For example, pre-filtering over a 1D box kernel in the x dimension: 2

∂

∂θ

∫
H(x′ + θ)ϕ(x− x′)dx′ =

∫
δ(x′ + θ)ϕ(x− x′)dx′ = ϕ(x + θ)

Here we use ϕ to represent the probability density function (pdf) of the uniform continuous

distribution U [−ϵ, ϵ]. The gradient evaluates to 1
2ϵ

if x + θ ∈ [−ϵ, ϵ], and 0 elsewhere. Note

that because the discontinuity depends on both x and θ, we can differentiate with respect

to (wrt) θ while pre-filtering along x.

A key motivation of our approach is that in many applications, there are a few dimensions

that most parametric discontinuities depend on, such as time for audio or physics simulation

programs, or the 2D image axes for shader programs, or low-dimensional subspaces involving

e.g. linear combinations of arbitrary axes. As a result, the computational challenge of

sampling discontinuities in high dimensions can be greatly reduced by placing samples along

these axes, which are much lower dimensions than the entire parameter space. We denote

them as sampling axes. In principle, sampling axes can be arbitrary, and we do not need

every discontinuity to be projected on a single axis. For a set of sampling axes, as long as

discontinuities of interest project to one of them, their gradient will be included.

2 We will show in Section 2.8.4.1 that the swapping of differentiation and integration operators is valid
for the set of programs investigated in this thesis – this set is described in Section 2.7.2.
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We propose to approximate the gradient wrt every parameter by first pre-filtering using

a 1D box kernel on the sampling axes. For example, for a continuous function g, we can

differentiate H(g(x, θ)) pre-filtered by a kernel ϕ(x) wrt θ as follows, assuming dg
dx

̸= 0 at the

discontinuity xd, and applying Dirac Delta’s scaling property.

∂

∂θ

∫
H(g(x′, θ))ϕ(x− x′)dx′ =

∫
δ(g(x′, θ))

∂g

∂θ
ϕ(x− x′)dx′

=

∫
δ(x′ − xd)

∂g
∂θ

| dg
dx
|

ϕ(x− x′)dx′

=
∂g
∂θ

| dg
dx
|
|xd

ϕ(x− xd)

(2.1)

We choose 1D box (boxcar) kernels to minimize the extra compute needed for locating

the discontinuity xd and computing ϕ(x − xd). Previous work either relies on simplifying

assumptions such as c is invertible [10], or has to use recursive algorithms to find the exact

location of xd [71]. Unlike previous work, because a box kernel ϕ is piece-wise constant, we

can simplify computing ϕ(x− xd) into sampling whether x− xd ∈ [−ϵ, ϵ].

2.4 Our Minimal DSL and Gradient Rules

This section formally defines the set of programs expressible in a minimalistic formulation

of our domain specific language (DSL). We present the minimal DSL first to simplify the

exposition, but later in this section, we extend our DSL to include a ternary if or select

function in Section 2.5.2. In Chapters 3 and 4, we additionally extend the DSL to include

application-specific operators: a ray-marching construct for shader programs, and a discrete

choice construct for audio synth programs. After presenting the minimal DSL, we will present

our gradient rules which can be used to extend typical reverse-mode AD. Finally, we use a

toy example to demonstrate the applicability of differentiating discontinuities.
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2.4.1 Our Minimal DSL Syntax

We formally define the set of programs expressible in our minimal DSL using the Backus-

Naur form. The set of all programs expressible in our language can be defined as below, where

C represents any constant scalar value, x represents any variable that is a sampling axis, θ

represents any parameters we want to differentiate wrt, and f are continuous atomic functions

supported by our DSL (presently, sin, cos, exp, log, and pow with constant exponent).

ed ::= C | x | θ | ed + ed | ed · ed | H(ed) | f(ed)

Using this syntax, we formally define Dirac parameters as any parameters θ that expres-

sions of the form of H(ed) statically depend upon.

2.4.2 Our Gradient Rules

This section formally defines our pre-filtering process, and presents novel gradient rules that

approximate the derivatives of the pre-filtered function.

We define a function f : dom(f) → R that maps a subset of Rn+1 to a scalar output in

R. For prefiltering purposes, we assume f to be locally integrable.

Additionally, for evaluation purposes, we define computational singularity, which refers

to the function value being undefined for any intermediate node of f . It is formally defined

by ruling out every possible case in our DSL syntax that may lead to undefined numbers

over the reals.
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Definition 1 A function f ∈ ed is computationally singular at (x, θ⃗) if any of its interme-

diate values g satisfies one or more of:


g = hC where constant integer C < 0 and h(x, θ⃗) = 0

g = hC where C is a constant non-integer and h(x, θ⃗) ≤ 0

g = log(h) where h(x, θ⃗) ≤ 0

Based on Definition 1, we define dom(f) to be the set {(x, θ⃗) ∈ Rn+1 : f is not com-

putationally singular at (x, θ⃗)}. Note that our framework and implementation also support

multidimensional outputs Rk such as RGB colors for k = 3, but since the same gradient

process is applied to each output independently, for a simpler notation but without loss of

generality we assume the codomain of f is R. In our compiler, multidimensional outputs are

implemented for efficiency using a single reverse mode pass as described in Section 2.5.

Our gradient rules approximate the gradient of the pre-filtered function f̂ , which is the

convolution of f with a box kernel along the sampling axis x.

f̂(x, θ⃗; ϵ) =
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

f(x′, θ⃗)dx′ (2.2)

Here x corresponds to the sampling axis, θ⃗ is the vector of parameters that we wish to

differentiate with respect to, and α, β are non-negative constants for each pre-filtering with

α + β > 0, that control the box’s location.

Note we only choose the first argument x as the sampling axis for simplicity in our

presentation. In general, f could be a function with only the n parameters θ⃗, and the

sampling axis could be any dimension where the sample is placed along, either dependent

or independent to the n parameters. But we omit this and explicitly set x for brevity and

lucidity.

37



Table 2.2: Gradient rules for our compiler and traditional AD. ∗: in our compiler implemen-
tation (but not our theoretical results), to avoid numerical instability, the division in our
function composition rule is safeguarded, and evaluates to h′ whenever |g+ − g−| ≤ 10−4.

Op Ours (k = O) AD (k = AD)

∂kH(g)
∂θ

{ ∂kg

∂θ

|g+−g−| if H(g+) ̸= H(g−)

0 else
0

∂k(g+h)
∂θ

∂kg
∂θ

+ ∂kh
∂θ

∂kg
∂θ

+ ∂kh
∂θ

∂k(g·h)
∂θ

1
2
(h+ + h−)∂kg

∂θ
+ 1

2
(g+ + g−)∂kh

∂θ
h∂kg

∂θ
+ g ∂kh

∂θ

∂kh(g)
∂θ

{
h′ ∂kg

∂θ
if h(g) is statically differentiable

h(g+)−h(g−)
g+−g−

∂kg
∂θ

otherwise∗
h′ ∂kg

∂θ

In our approximation, we locate discontinuities by placing two samples at each end of the

kernel support. Specifically, we denote x+, x− as the two ends of the kernel support,

and (·)+, (·)− as evaluating an expression (·) at each end of the kernel support

respectively. When ϵ is small enough, (·)+ and (·)− can be viewed as approximating the

right and left limits of an expression (·).

Both ours and AD approximate the derivative of functions, with differentiation rules

summarized in Table 2.2. We further denote gradient approximations as ∂k, where k ∈

{O,AD} indicates ours and the traditional AD rule respectively. These rules contain a

minimum set of operations from which any program from the set ed can be composed. For

example, g − h = g + (−1) · h and g/h = g · (h)−1. Boolean operators can be rewritten

into compositions of step functions based on De Morgan’s law. Section 2.5.2.2 discusses an

equivalent but more efficient gradient rule for Boolean operators. Forward mode AD can be

carried out by applying Table 2.2 directly. Reverse-mode AD derivative rules can be obtained

by replacing in Table 2.2 θ with the input argument g or h, and treating the other input

argument as constant for addition and multiplication. When combined with reverse-mode

differentiation on n parameters, both ours and traditional AD have O(1) complexity. But

AD can be faster due to its simpler rules. This is in contrast with finite difference, which

has O(n) complexity and is inefficient for programs with many parameters.
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H(x) ∂OH(x)
∂x

H(x) ∂OH(x)
∂x

(a) (b)

Figure 2.2: Illustration of computing ∂OH(x)
∂x

using our gradient rule. (a) The discontinuity of
H(x) is sampled between x+ and x−, therefore the corresponding gradient approximation is
nonzero. (b) The discontinuity of H(x) is not sampled, therefore the corresponding gradient
approximation is zero.

We now motivate and discuss the gradient rules where ours are different from traditional

AD.

2.4.2.1 Heaviside step

We first describe the simplest scenario: differentiating H(x) wrt x using our gradient rule.

Figure 2.2 illustrates the computation process. If we use θ = x, g = x in our step function

gradient rule in Table 2.2, the approximation result has a piecewise constant box shape as

in the right plot of Figure 2.2 (a)(b). Note this box shape also corresponds to the box kernel

we use to obtain the pre-filtered function f̂ in Equation 2.2. When the two samples x+

and x− evaluate to different sides of the discontinuity as in Figure 2.2 (a), the condition

H(x+) ̸= H(x−) is met, therefore our gradient approximation evaluates to the nonzero value

1/|x+ − x−|. Conversely, when x+ and x− evaluate to the same side of the discontinuity as

in Figure 2.2(b), our gradient approximation evaluates to zero.

We further motivate differentiating the more generic H(g(x, θ)) from Equation 2.1 as-

suming ϕ is a 1D box kernel with α = β = 1. Equation 2.1 can be represented using the

pre-filtering notation defined in Equation 2.2.
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f =H(g(x, θ))

∂f̂(x, θ; ϵ)

∂θ
=

∂g
∂θ

| dg
dx
|
|xd

ϕ(x− xd)
(2.3)

Additionally, we can define the 1D box kernel ϕ(x) as the following and insert back to

Equation 2.3.

ϕ(x) =


1
2ϵ

if x ∈ [−ϵ, ϵ]

0 otherwise

(2.4)

∂f̂(x, θ; ϵ)

∂θ
=


1
2ϵ

∂g
∂θ

| dg
dx

|
|xd

if xd ∈ [x− ϵ, x + ϵ]

0 otherwise

(2.5)

Evaluating Equation 2.5 requires exactly computing the discontinuity xd, which could be

expensive for complicated g. We therefore apply a series of derivations and finally demon-

strate the rule in Table 2.2 is a good approximation to Equation 2.5.

We start with the branching condiiton xd ∈ [x − ϵ, x + ϵ]. Because the discontinuity

xd implies g(xd, θ) = 0, and because we assume ϵ is small enough such that at most one

discontinuity exists within the interval [x−ϵ, x+ϵ], the branching condition xd ∈ [x−ϵ, x+ϵ]

is equivalent to whether the Heaviside step function H(g(x, θ)) has flipped state between the

two ends of the kernel support:

xd ∈ [x− ϵ, x + ϵ] ≡H(g−) ̸= H(g+) (2.6)

We next discuss evaluating ∂g/∂θ at xd. Because Equation 2.5 is only nonzero for xd ∈

[x − ϵ, x + ϵ], we only discuss this case. Since Equation 2.1 assumes g is a continuous
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function, it is therefore locally Lipschitz continuous (formally proved in Section 2.8). As a

result, evaluating g and its derivatives on a neighboring location to xd always has an error

bounded by first-order terms:

1

2ϵ

∂g

∂θ
|xd

=
1

2ϵ

∂g

∂θ
|x + O(xd − x)

=
1

2ϵ

∂g

∂θ
|x + O(ϵ)

Because xd ∈ [x− ϵ, x+ ϵ]

(2.7)

Finally, we approximate dg/dx that evaluates at xd using finite difference. This avoids

an extra back-propagation pass to analytically computing dg/dx. Because g+ and g− are

computed as an intermediate value as part of the computation of H(g+), H(g−), no ex-

tra computational passes are needed for the finite difference. Similarly because of locally

Lipschitz continuity, we can bound the approximation with first-order tersm.

dg

dx
=

g+ − g−

2ϵ
+ O(ϵ) (2.8)

Inserting Equation 2.6 - 2.8 to Equation 2.5 we get the following:

∂f̂(x, θ; ϵ)

∂θ
=


1
2ϵ

∂g
∂θ

+O(ϵ)

| g+−g−
2ϵ

|+O(ϵ)
if H(g−) ̸= H(g+)

0 otherwise

=


∂g
∂θ

|g+−g−| + O(ϵ) if H(g−) ̸= H(g+)

0 otherwise

Assuming g+ − g− ̸= 0

(2.9)

Comparing Equation 2.9 with the H(g) rule in Table 2.2 we conclude that our proposed

gradient rule is a first-order approximation to the motivating example in Equation 2.1.

41



2.4.2.2 Multiplication

Our derivative rules work correctly when there is at most one discontinuity in the local

region. However, when authoring programs, intermediate values that depend on the same

discontinuity may further interact with each other, leading to multiplications where both

arguments are discontinuous. For example, in shader programs, the lighting model to a 3D

geometry may depend on discontinuous vectors such as surface normal, point light direction,

reflection direction, or half-way vectors. These vectors can be discontinuous at the intersec-

tion of different surfaces, or at the edge where a foreground object occludes a background

object. When computing the intensity, these vectors are usually normalized first, therefore

each of the discontinuous elements n needs to be squared and may be expressed as n · n.

For simplicity, we assume n is a Heaviside step function and motivate our rule by showing

differentiating f = H(x + θ) ·H(x + θ) using the AD rule is already incorrect.

Because f = H(x+ θ) ·H(x+ θ) can be simplified into H(x+ θ), its pre-filtered gradient

is already discussed in Section 2.3. Assuming a discontinuity sampled within the kernel, we

can plug in c(x, θ) = x + θ and ϕ(x− xd) = 1
2ϵ

into Equation 2.1 and get the following:

∂f̂

∂θ
(x, θ; ϵ) =

1

2ϵ

Directly differentiating with the AD rule leads to zero because AD cannot correctly handle

step functions. Even if we use our rule to differentiate the Heaviside step function and only

use AD’s multiplication rule on f = H ·H, we still get the following incorrect result:

∂ADf

∂θ
= H(x + θ)

1

|2ϵ| + H(x + θ)
1

|2ϵ| =
H(x + θ)

ϵ
̸= ∂f̂

∂θ

Because H(x + θ) only evaluates to 0 or 1, ∂ADf
∂θ

is always incorrect.

Intuitively, AD fails because it treats the function as continuous, and therefore is always

biased to either side of the branch. Because TEG’s [10] multiplication rule is equivalent to
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that of AD, this also leads to the degeneracy discussed in their Section 4.6: differentiating

the multiplication of two identical step functions involves multiplication of a step function

with a Dirac delta, both being singular at the same position. Thus integrals involving such

multiplication are undefined.

Unlike TEG and AD, our multiplication rule samples on both sides of the branch, and

therefore robustly handles this case.

∂Of

∂θ
=

H+ + H−

2

1

|2ϵ| +
H+ + H−

2

1

|2ϵ| =
1

2ϵ
=

∂f̂

∂θ

2.4.2.3 Function composition

Our derivative rule applies to atomic continuous functions h to differentiate h ◦ g. The

compiler chooses between two equations to avoid numerical instability while differentiating

discontinuous functions. Similar to multiplication, directly applying the AD rule to discon-

tinuities leads to incorrect results. For example, the same function f = H(x + θ) ·H(x + θ)

we discussed for multiplication in Section 2.4.2.2 can also be expressed as f = H(x + θ)2,

which can be viewed as applying a square function (·)2 to H(x + θ). Naively applying the

AD function composition rule to this function combined with our Heaviside step gradient

rule results in the following.

∂ADf

∂θ
= 2H(x + θ)

1

|2ϵ| =
H(x + θ)

ϵ
̸= ∂f̂

∂θ

The result from using the AD function composition is again incorrect and similar to multi-

plication: this is due to AD always being biased to one branch or the other. On the contrary,

our composition rule samples on both branches and is robust at discontinuities.

∂Of

∂θ
=

H+ −H−

H+ −H−
1

|2ϵ| =
1

2ϵ
=

∂f̂

∂θ
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Note our approximation applies different rules based on whether h(g) is statically differ-

entiable. Static differentiability of h(g) means either h(g) is statically continuous or h(g)

is not statically dependent on x. For static continuity, the compiler applies static analysis

to the program, and decides static continuity based on whether each node depends on any

discontinuous operators in its compute graph.

2.5 Compiler Details

We implement a compiler by extending the reverse-mode automatic differentiation to dis-

continuous programs by replacing the original gradient rules from calculus with our gradient

rules from Table 2.2. As mentioned in Section 2.4.2, our compiler supports functions with

multi-dimensional outputs in Rk such as for k = 3 for shader programs that output RGB

colors. Assuming we are optimizing a scalar loss L, we implement the gradient in a single

reverse pass for efficiency by first computing the components ∂L/∂f i of the Jacobian matrix

for each output component f i of f , and the backward pass simply accumulates (using addi-

tion) into ∂L/∂g for each intermediate node g. Our implementation assumes the program

is evaluated over a regular grid, such as the pixel coordinate grid for shader programs. This

allows small pre-filtering kernels that span between the current and neighboring samples

that can still catch small discontinuities so long as they show up when sampling the grid.

Since our gradient approximation only works with a single discontinuity in the local

region, our compiler averages between two smaller non-overlapping pre-filtering kernels to

reduce the likelihood that the single discontinuity assumption is violated within each kernel.

Specifically, we average the gradient between U [−∆x, 0] and U [0,∆x], where ∆x is the

sample spacing on the regular grid. This is similar to pre-filtering with U [−∆x,∆x], but

allows our compiler to correctly handle discontinuities whose frequency is below the Nyquist

limit. For example, if a discontinuous function in a shader program that results in a periodic

color change with alternating color for each pixel, our compiler can still correctly differentiate
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Figure 2.3: Visualizing different options for how to combine multiple sampling axes in 2D.
The green line demonstrates a discontinuity, and the blue region indicates evaluation loca-
tions where discontinuity can be sampled. Naively choosing either the x (a) or the y axis
(b) can result in the discontinuity parallel to those axes being sampled at measure zero lo-
cations. For example, at the evaluation location indicated with a red square, each method
places additional samples (orange squares) to sample discontinuities. Naively choosing the
x axis (a) fails because the discontinuity is parallel to the kernel direction. Although naively
choosing the y axis (b) succeeds, it will fail if evaluated at the purple pentagon instead.
Pre-filtering with a 2D kernel (c) allows robust sampling over the discontinuity, but the inte-
gration induces a computational burden that grows exponentially with the number of axes.
Our implementation (d) adaptively chooses from available axes, and ensures discontinuities
in any orientation can be sampled with nonzero probability.

the program for the the single pixel that has different discontinuities on both sides. In the

case of a single sampling axis, we would draw 3 samples along the sampling axis for each

location where the gradient is approximated. Furthermore, the samples may be shared

between neighboring locations on the regular grid.

Additionally, the compiler conservatively avoids incorrect approximation due to multiple

discontinuities. We collect the H(g) nodes within the compute graph where g is statically

continuous. If more discontinuity is sampled for than one such nodes, the compiler nullifies

the contribution from that location by outputting zero gradient.

2.5.1 Combining Multiple Sampling Axes

It is common for multiple sampling axes to exist, either because the program is evaluated

on a multi-dimensional grid (e.g. the 2D image for our shader applications), or because no

single axis can be used to project every discontinuity. A natural question arises: how do
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we extend Section 2.4.2 to handle multiple sampling axes? A naive approach is arbitrarily

choosing one of the axes, which risks ignoring some discontinuities that are not projected

to the chosen one. This may happen, for example, when the discontinuity is parallel to the

sampling axis (Figure 2.3(a)(b)). Another approach is to use a multi-dimensional prefiltering

kernel (Figure 2.3(c)). However, due to the sifting property of the Dirac delta, integrating

against a Dirac delta in n-dimensions with n > 1 typically results in an n − 1 dimensional

integration over the set where the Dirac delta’s argument is zero, which can be challenging

but can be handled by additional sampling [10] or by recursively finding the intersection

between discontinuity and the kernel support [71].

In our implementation, for simplicity, we instead use a separate 1D kernel for each sam-

pling axis and combine gradient approximations from different sampling axes afterward. For

each location, we adaptively choose approximations from available sampling axes based on

the following intuition: the chosen axis should ideally be the one that is closest to perpen-

dicular to the discontinuity (Figure 2.3(d)). This allows fixed-size small steps along the

sampling axis to have a larger probability of sampling the discontinuity. In practice, for a

discontinuity H(c), we quantify this feature as | ∂c
∂x
|, and choose the axis with the largest

value. Because this term corresponds to the denominator in Equation 2.1, a larger value

leads to approximate gradients with smaller magnitude, therefore smaller variance. For m

sampling axes, our compiler draws 2m+ 1 samples, which can be potentially shared between

neighboring locations.

2.5.2 Efficient Ternary Select Operator

Section 2.4.2 discusses that in order to robustly handle discontinuities, our multiplication

rule places two samples on both ends of the kernel support while AD just needs one. This

leads to extra memory usage (although asymptotically the same) in the backward pass, which

may lead to performance issues such as register spilling.
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To alleviate the problem, our compiler always applies static analysis before multiplication,

and switches to AD whenever both arguments are statically continuous. However, the ternary

if or select operator can still be frequently expressed as multiplications of discontinuous values

using the minimum DSL syntax introduced in Section 2.4.1. This is because the branching

values themselves can be discontinuous, or the condition is a Boolean expression that needs

to be expanded into multiplications of step functions using De Morgan’s rule. Therefore, we

introduce the ternary operator as an extended primitive to the DSL and design specialized

optimizations so that differentiating it uses similar storage to the AD rule, while allowing

the first-order correctness property to stay the same as claimed in Section 2.7.

2.5.2.1 General Ternary Select Operator

This section discusses branching with inequality conditions that can be written in the form

F (p, l, r) =select(p ≥ 0, l, r)

=r + (l − r) ·H(p) (2.10a)

Branching with complex Boolean expressions will be discussed next in Section 2.5.2.2. The

rule developed in this section can also be used in all inequality and equality comparisons:

p ≥ q is equivalent to p − q ≥ 0, p ≤ 0 can be rewritten as −p ≥ 0, and select(p > 0, l, r)

is equivalent to select(−p ≥ 0, r, l). The equality comparison p == q can be written as the

Boolean expression p ≥ q ∧ p ≤ q, which can be differentiated by the rules discussed next in

Section 2.5.2.2.

Instead of directly applying the multiplication rule in Table 2.2, we design a specialized

rule for branching that uses similar storage as if the gradient is approximated by AD. The

specialized rule utilizes the fact that our evaluation location always coincides with one of the

endpoints of our pre-filtering kernels. That is, we either have x = x+ for the pre-filtering

kernel U [−∆x, 0], or x = x− for U [0,∆x]. For simplicity, when evaluating a function g at
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two ends of the pre-filtering kernel, we always denote them as g and gn, where g = g(x), and

gn is evaluated at the neighboring location at the other end of the kernel support (i.e. g− for

U [−∆x, 0] and g+ for U [0,∆x]). The gradient rule for the efficient ternary select operator

is shown in Equation 2.11.

∂OF

∂θi
= (ln − rn)

∂kH(p)

∂θi
+ select(p > 0,

∂kl

∂θi
,
∂kr

∂θi
) (2.11)

An alternative and potentially more intuitive way to derive Equation 2.11 above is to

directly differentiate the select definition in Equation 2.10a but using a simplified and

biased multiplication rule given in Equation 2.12 below. We denote this biased multiplication

gradient rule as δT because the reader can only use it to derive the ternary operator select,

and is different from the multiplication rule we actually used in Table 2.2, which is denoted

as ∂O. Similar to Table 2.2, the gradients for g and h are denoted with ∂k to emphasize that

Equation 2.12 is agnostic to how these two terms are computed. Section 2.8.6.7 will show

this new rule for the ternary select has identical correctness properties as differentiating F

using the original multiplication rule.

∂T (g · h)

∂θi
= h

∂kg

∂θi
+ gn

∂kh

∂θi
(2.12)

For special operators such as min() and max(), although they are also expanded using

a ternary select, because the compiler can statically identify they are C0 continuous, they

are always differentiated using AD.

2.5.2.2 Boolean Conditions for Ternary Select

This section discusses specialized rules for branching conditions in F = select(B, l, r) such

that B can be decomposed into the Boolean expressions of n inequality clauses: Ci = ci ≥

0, i = 1, ..., n.
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Similar to sampling floating point values at two ends of the filtering kernel, we can

also sample Boolean values such as B+ and B−. Disagreeing Boolean samples indicate the

presence of discontinuity, such as when B+ ⊕B− evaluates to true, where ⊕ indicates XOR.

When a discontinuity is sampled, our single discontinuity assumption allows us to infer that

every discontinuous Boolean clause depends on the same underlying floating point valued

function. Therefore, if we further sample every Boolean clause used in F and identify two

different clauses Ci, Cj disagree simultaneously: (C+
i ⊕ C−

i ) ∧ (C+
j ⊕ C−

j ) evaluates to true,

then we assume Ci and Cj are equivalent at the current location. Our rule will traverse and

sample each Boolean clause Ci in an arbitrary order, and replace ∂H(p)
∂θi

in Equation 2.11 with

∂H(ci)
∂θi

for the first clause Ci where a discontinuity is sampled.

2.6 Toy Application: Path Planning

This section uses a path planning toy example to demonstrate the applicability of our dif-

ferentiation framework. Chapters 3 and 4 further build two systems that apply our gradient

rules to the domains of shader programs and audio synth programs respectively.

The optimization task is to solve for a 2D trajectory that allows an object to travel from

a start position to the target position without hitting any of the obstacles.

We first initialize the 2D trajectory with zero velocity and a fixed start point at time 0.

The motion of the 2D trajectory is modeled by 10 segments of piece-wise constant accelera-

tion. Each constant segment is parameterized by its x and y components of the acceleration,

as well as the duration of the segment. Therefore, the velocity and position can be rep-

resented as piece-wise linear and piece-wise quadratic forms respectively. An L2 loss Ldist

encourages the position at the end of the last segment to be close to the target position.

We model the obstacles as a discontinuous repulsion field with a constant large value

inside the obstacle and 0 everywhere else. A configuration is penalized by the integral of

the field along the trajectory. The penalty term Lrepulsion can be further reparameterized
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(a) Init (b) Ours (c) FD* (17x) (d) AD (0.9x)

Figure 2.4: Path planning task: obstacles we wish to avoid are shaded as black regions,
starting and desired ending positions of the path are denoted as red and green crosses
respectively. The path is initialized as a straight line between them (a). Both Ours (b) and
FD* (c) can find a desirable path but AD (d) suffers from failing to avoid the discontinuous
repulsion field. We experimented FD with five different step sizes, and report the one with
the lowest error in FD*. We report relative runtime to ours for FD* and AD. While AD has
similar runtime, FD* is significantly slower.

as an integral over time, and is approximated by quadrature using 10 samples per constant

acceleration segment. We additionally add a third loss Lfuel that minimizes the integral of

the magnitude of the acceleration over time, which is proportional to the total fuel consumed

assuming constant specific impulse: an analogy to propellant in aerodynamics.

We report the optimized trajectory in Figure 2.4 and compare with two baselines: finite

difference (FD) and automatic differentiation (AD). Because our gradient rules easily sample

the discontinuous repulsion field, our trajectory both avoids all the obstacles, and is energy

efficient with optimized Lfuel as well. FD, on the other hand, is much slower than ours (17x)

and already struggles to find a good step size with this toy example. We run the experiment

with FD for 5 different step sizes and only report the variant with the lowest error as FD* in

Figure 2.4. While FD* uses a larger step size that allows discontinuity to be easily sampled,

this step size is already too large to accurately differentiate the continuous losses, such as

Lfuel, leaving the trajectory only sub-optimal: it makes unnecessary turns near the starting

point. Finally, AD unsurprisingly fails to avoid the obstacles because it is unable to sample

the discontinuity in the repulsion field.
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2.7 Theoretical Error Bound Claim

This section establishes the theoretical guarantee to our gradient approximations. We first

formally define the notion of first-order correctness of a gradient approximation. Then we

characterize the subset of programs for which ours is first-order correct. Finally, we provide

a proof sketch of our claims.

2.7.1 First-Order Correctness Definition

Typically, when approximating a finite valued reference, we characterize the error of an

approximation method by it’s absolute difference from the reference. However, the reference

derivative for pre-filtered discontinuous functions could approach infinity as the kernel size ϵ

goes to zero. Therefore we care more about whether the approximation approaches infinity

asymptotically with the reference. Because the derivative for continuous and discontinuous

functions have varying characteristics, we define absolutely and relatively first-order correct

gradient approximations, where absolutely is used for local regions where f is continuous and

relatively is used otherwise. Intuitively, these say that the partial derivative approximation

matches prefiltered derivatives from f̂ up to error O(ϵ).

Definition 2 A gradient approximation ∂kf
∂θi

is absolutely first-order correct for parameter θi

at (x, θ⃗) with kernel size ϵ if

∂kf

∂θi
(x, θ⃗; ϵ) =

∂f̂

∂θi
(x, θ⃗; ϵ) + O(ϵ) (2.13)

Definition 3 A gradient approximation ∂kf
∂θi

is relatively first-order correct for parameter θi

at (x, θ⃗) with kernel size ϵ if

∂kf

∂θi
(x, θ⃗; ϵ) /

∂f̂

∂θi
(x, θ⃗; ϵ) = 1 + O(ϵ) (2.14)
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(a) Shader example for ea (b) Shader example for eb

(c) Shader example for ec (d) Shader example for ed

Figure 2.5: Shader examples that belong to different subsets of programs.

2.7.2 Subsets of Our Minimal DSL

In general, we do not guarantee first-order correct gradient approximation for every program

in ed, although we do show empirically in Chapter 3 that ours typically has a low error

and works in practice for optimizing shader parameters. To show first-order correctness, we

progressively define ed from smaller subsets whose correctness can be shown.

ea ::= C | x | θ | ea + ea | ea · ea | f(ea)

eb ::= H(ea) | H(eb) | C · eb | eb + eb | eb · eb | f(eb)

ec ::= ea | eb | ec + ec | ec · ec | f(ec)

ed ::= ec | H(ed) | ed + ed | ed · ed | f(ed)
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ea represents all continuous programs that can be expressed in our DSL. Both ours

and AD are correct for this set. For example, a color palette that smoothly changes color

according to time and pixel coordinates belongs to this set (Figure 2.5 (a)).

eb represents a subset of piece-wise constant discontinuous programs, whose discontinu-

ities are either represented by continuous functions, or another eb function. Our gradient

is correct almost everywhere for ēb: eb excluding three pathological cases described in Sec-

tion 2.7.2.1: discontinuity degeneracy, part dependency on the sampling axis, and disconti-

nuities with roots of order 3 or above. For example, a black and white blob whose shape

changes parametrically belongs to eb (Figure 2.5 (b)).

ec represents the subset of programs whose discontinuities share similar constraints as eb,

but with arbitrary continuous parts expressible by ea. Our gradient is also correct almost

everywhere for ēc: ec excluding the same pathological cases as before. For example, a blob

whose color is rendered according to pixels’ distance to the object boundary belongs to ec

(Figure 2.5 (c)).

ed is the entire set of programs expressible in our minimal DSL. Generally, we do not give

any correctness guarantee for this set. However, Chapter 3 will empirically show that gradient

approximations in this set have low error under a quantitative error metric. For example,

an Olympic rings shader with parametric Z ordering can be expressed in the minimal DSL

(Figure 2.5 (d)), where the visibility decision involves comparing a continuous value (Z value

for the current ring) to a discontinuous value (accumulated Z).

2.7.2.1 Pathological Exceptions

To accurately characterize the set of programs our compilers can differentiate with first-order

correctness, we define ēb, ēc, ēd as their original counterparts eb, ec, ed excluding three excep-

tions: discontinuity degeneracy, part dependency on the sampling axis, and discontinuities

with roots of order 3 or above in Definition 4, 6 and 7. Except for pathological programs,

these occur rarely in practice. For clarity and to emphasize their pathological nature, we
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presented these exceptional programs as being removed from the grammar. However, since

these 3 properties can be analyzed in a pointwise manner, if desired, our correctness guaran-

tee also holds on such programs if dom(f) is chosen such that it does not contain any points

with these properties.

Definition 4 A program f ∈ ec has discontinuity degeneracy at (x, θ⃗) if f is C0 continuous,

but by static analysis the compiler classifies f as being not C0 continuous. For instance, min

is statically classified correctly, 3 but the composition of a C0 continuous function with a

discontinuous function can give a discontinuity degeneracy: e.g. f(x) = (2H(x) + x − 1)2:

this can be simplified by a human to f(x) = {(x− 1)2, if x < 0, otherwise (x + 1)2}, which

is C0, not C1, but the compiler identifies it as being not C0 due to the Heaviside step.

Before defining part dependency, we first start with a preliminary definition: locally zero

along the sampling axis in Definition 5. Intuitively, when the function f is not statically

constant but evaluates to constant values within a local interval, this may result in undefined

values due to dividing by zero when the difference in function evaluations is used in the de-

nominator for our gradient rules (e.g. Heaviside step and function composition in Table 2.2).

This may further lead to pathological functions containing intermediate expressions H(g)

that always evaluate at the singularity g = 0 within a local interval.

Definition 5 A function f is locally zero along the sampling axis (i.e. x) at (x, θ⃗) if ∃ ϵ >

0 s.t. f(x′, θ⃗) = 0 ∀ x′ ∈ (x − ϵ, x + ϵ) whenever (x′, θ⃗) ∈ dom(f). Note also that to avoid

excessively verbose notation, from here on, when there is such an x′ we always implicitly

assume (x′, θ⃗) ∈ dom(f), i.e. we assume we are within the set of points where f is defined.

Definition 6 A program f ∈ ec has part dependency on the sampling axis x if for some

intermediate value h(g) where h is a unary atomic function, g is not statically continuous

and statically depends on x, and g is continuous at (x, θ⃗), and ∂g/∂x exists, but ∂g/∂x is

3 While special operators such as min() and max() involve comparison and branching, their structure is
simple enough for the compiler to identify and statically classify correctly.
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locally zero. For instance, f(x, θ) = sin(θ + θ · H(x)). This can result in non-first-order

correct gradients for certain non-Dirac parameters, but they are not the main focus of the

proposed approach.

Definition 7 A program f ∈ ec has a discontinuity with a pth order root along the sampling

axis x if for some intermediate value H(g) with g ∈ ea, g has a pth order zero along x, i.e.

∂jg/∂xj = 0 for j = 0, . . . , p− 1 and ∂p+1g/∂xp+1 ̸= 0. For instance, f(x, θ) = H((x + θ)3)

has a discontinuity with 3rd order root at x + θ = 0 because at those points g = (x + θ)3 has

g, ∂g/∂x, ∂2g/∂2x = 0, ∂3g/∂x3 = 6.

The above definitions are only applied for programs in ēb and ēc (eb ⊂ ec so the definitions

also can be applied to eb). Because discontinuities in ed are more difficult to characterize

and our correctness claim in Section 2.7.3 does not guarantee anything about ēd, we do not

consider such programs.

2.7.3 First-Order Correctness Conclusions

We begin by defining sets where f is continuous and discontinuous with respect to (wrt) dif-

ferent parameters, then we “dilate” the discontinuous sets for reasons related to the measure

theory that we will discuss, and finally we show our theorem on the program sets ea, ēb, ēc,

where ēb, ēc excludes pathological cases from eb, ec respectively.

Definition 8 Given a function f , the continuous set Ci is the set of all points (x, θ⃗) in

dom(f) where f is continuous wrt θi, or f has a discontinuity with second order root (meaning

there exists an intermediate value H(g) where g and ∂g/∂x evaluate to zero and ∂2g/∂x2

evaluate to nonzero). The discontinuous set Di = dom(f) \ Ci.

Definition 7 excludes discontinuities with roots of order 3 or above in the ēb, ēc definition,

so this leaves discontinuities with roots of order 2 or below in ēb and ēc. Given H(g), the

second order roots for an intermediate value g are of the form that they touch the x-axis at
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a point without crossing it, so along x, the prefiltered derivative ignores this point and this

point could be removed from the prefiltered gradient without changing it. Thus, we compare

ours with a prefiltered gradient that we consider continuous (wrt x) at this point, so this is

why we place the discontinuities with second-order roots in Ci.

In most cases of practical interest, the discontinuous sets Di are of Lebesgue measure

zero so the convenient Lebesgue measure gives uninteresting results on those sets. Thus we

define “dilated” sets Dr
i that expand regions around the discontinuities so discontinuities

typically expand into nonzero measure regions as follows:

Definition 9 The dilated 1D interval N r(x, θ⃗) conditioned on some ϵf (x, θ⃗) > 0 is defined

as {(x′, θ⃗) ∈ dom(f)) : x′ ∈ (x− βϵ′, x + αϵ′) for ϵ′ = rϵf (x, θ⃗)}.

Definition 10 The dilated discontinuous set Dr
i is defined as Dr

i =
⋃

∀(x,θ⃗)∈Di
N r(x, θ⃗).

We are now ready to present our correctness results for both the continuous set Ci and

dilated discontinuous set Dr
i . We start with the correctness for Ci using absolutely first-order

correct defined in Equation 2.13.

Theorem 1 For our approximation, ∃ϵf (x, θ⃗) > 0 such that for all parameters θi, for every

kernel size ϵ ∈ (0, ϵf (x, θ⃗)), f ∈ ea ∪ ēb is absolutely first-order correct on Ci, and almost

everywhere on Ci for ēc.

Theorem 1 trivially holds for ea and ēb, and a proof sketch for ēc will be presented in

Section 2.8. Because ea programs are statically continuous, our result reduces to AD in

the absence of discontinuities, therefore the left-hand side of Equation 2.13 is equivalent to

the AD gradient, and trivially approaches the right-hand side as the pre-filtering kernel size

ϵ goes to 0. For ēb, because eb functions are piecewise constant, its pre-filtered gradient

is always 0 at the continuous set Ci. Similarly, our rule also gives 0 for the gradient in

those regions because discontinuities are not sampled. We next give some intuition for ēc.

Because f ∈ ēc can be statically discontinuous, our gradient rules may be used instead of
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AD. However, because the finite difference approximations made by our rules also approach

the AD rules as ϵ goes to 0, on the continuous set Ci, both the left and right-hand side of

Equation 2.13 approach the AD result as ϵ goes to 0, and we will show the error between these

two is bounded by first-order terms. The choice of ϵf is formally described in Section 2.8.5,

but intuitively it can be chosen such that the function f is Lipschitz continuous in the region

(x − ϵf (x, θ⃗), x + ϵf (x, θ⃗)). This ensures the differences between the two evaluation sites

on both function values and their gradients are bounded by first-order terms. Our almost

everywhere results on Ci for ēc excludes measure zero sets of locations that may result in

undefined values due to dividing by zero in the denominator for our gradient rules: we show

this in Section 2.8 Lemma 3. Note although it is unrelated to the math theory, in practice in

our implementation the division safeguard mentioned in Table 2.2 prevents a true division

by zero error.

We next present the correctness result for the dilated discontinuous set Dr
i using the

relatively first-order correct defined in Equation 2.13.

Theorem 2 For our approximation, ∀r ∈ (0, 1], ∃ϵf (x, θ⃗) > 0, τ : Dr
i → Di, such that for

all parameters θi, for kernel size ϵri = rϵf (τ(x, θ⃗)), f ∈ ēb ∪ ēc is relatively first-order correct

almost everywhere in in the dilated discontinuous set Dr
i (defined in Definition 10).

Similar to Theorem 1, a proof sketch for Theorem 2 will be presented in Section 2.8.

Because ea is the set of statically continuous programs, its discontinuous set Di is empty,

therefore is omitted from Theorem 2. Additionally, because ēb ⊂ ēc, it is equivalent to

prove Theorem 2 only for f ∈ ēc. The kernel size ϵri is decided based on the radius r of the

discontinuous set Dr
i : this ensures the discontinuity is always sampled with ϵri . Note that

as r varies in (0, 1], ϵri is proportional to r, so the result on Dr
i holds for a variety of kernel

sizes. Also note that τ simply projects any point on the discontinuous set Dr
i back to the

discontinuous set Di: intuitively it projects any point to its closest discontinuity along the

sampling axis x. It is needed so that the kernel size is decided based on ϵf evaluated at the

discontinuity: similar to how the radius of Dr
i is decided. Our almost everywhere results
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on Dr
i exclude measure zero sets of locations that have multiple discontinuities: we show

this in Section 2.8 Lemma 5. An alternative interpretation is that the discontinuous point

sets in Di, in general, can have Hausdorff dimension up to n (and usually this dimension

equals n), but the subset of points where our rule is not relatively first-order correct in Di

have Hausdorff dimension strictly less than n, so not first order correct points form a lower

dimensional subset within Di (see Section 2.8 Lemma 4 and 5).

2.8 Theoretical Error Bound Proof

This section presents the proof sketch for Theorem 1 and 2 when f ∈ ēc. The cases for

f ∈ ea ∪ ēb are less interesting and are already addressed in Section 2.7.3. The proof is

structured as follows. We start in Section 2.8.1 to summarize the important definitions and

lemmas for the program sets in Section 2.7.2. With the help of these preliminaries, we then

define the set of points that are absolutely or relatively first-order correct as C-simple and D-

simple points in Section 2.8.2. We next prove in Section 2.8.3 that C-simple points are almost

everywhere in Ci and D-simple points are almost everywhere in Dr
i . Because we compare

with the reference pre-filtered gradient in Theorem 1 and 2, we present in Section 2.8.4 a

locally equivalent representation for f ∈ ec such that the pre-filtered gradient can be easily

computed. After that, we construct ϵf in Section 2.8.5 to show its existence. And finally,

we prove absolutely first-order correct for C-simple points, and relatively first-order correct

for D-simple points through induction in Section 2.8.6.

2.8.1 Preliminaries

Section 2.7.2 procedurally defines the program set ed expressible in our DSL based on pro-

gram sets ea, ēb and ēc. Therefore in this section, we will first summarize the important

definitions and lemmas for these program sets and briefly justify our claims.
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We start with the local boundedness and continuity results for the program set ea: the

statically continuous programs. For simplicity but without loss of generality we always as-

sume the function is evaluated on one given sampling axis x and other tunable parameters

θ⃗. As a reminder, because the definition of the domain of f made in Section 2.4.2 always ex-

cludes computational singularities, our discussion in this section also excludes computational

singularities.

Lemma 1 A function f ∈ ea is evaluated at (x, θ⃗) ∈ dom(f) ⇒ ∃ ϵ > 0 s.t. f, ∂f
∂x
, ∂f
∂θi

are

bounded and Lipschitz continuous in [x− ϵ, x + ϵ].

Proof sketch: Because of the construction of our DSL set ea from real analytic functions, we

can always find ϵ > 0 so that f ∈ ea, its derivatives, and its second-order derivatives are all

real analytic on the local region. Real analytic therefore leads to local boundedness by the

boundedness theorem. Additionally, based on the multivariate mean value theorem, for any

two points a, b, ∃c along the line segment of (a, b) such that |f(a)− f(b)| ≤ |∇f(c)| · |a− b|.

Because the derivative of f is locally bounded, f is therefore locally Lipschitz continuous.

Similar argument could be applied to ∂f/∂x and ∂f/∂θ as well. ■

We next prove that discontinuities are isolated for functions constructed from our DSL.

Intuitively, this can be viewed as an analogy to the isolated zeros property for real analytic

functions of one variable.

Lemma 2 Isolated discontinuities: Given a function f ∈ ēc evaluated at (x, θ⃗) ∈ dom(f),

∃ϵ > 0 s.t. ∀x′ ∈ [x− αϵ, x) ∪ (x, x + βϵ], f is continuous at (x′, θ⃗) along the x axis.

Proof sketch: Because f ∈ ēc is constructed from our DSL, it only consists of a finite

number (N) of H(gi) such that no other Heaviside function depends on H(gi). In other

words, this means in the compute graph of f , no additional Heaviside step function node

exists on any path between the output node of f and H(gi). Without loss of generality, we

will only discuss the N = 1 case: H(g) is the only discontinuity consumed by the output
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of f . The N > 1 case can be generalized by following the N = 1 proof, then taking the

intersection of the continuous intervals associated with each H(gi): this can allow us to

recursively cover all of the functions in ēc.

We first discuss when f is discontinuous wrt x at (x, θ⃗). Because f ∈ ēc, the disconti-

nuity H(g) satisfies either g ∈ ea being real analytic or g ∈ eb being piece-wise constant.

Furthermore, in the g ∈ eb case, because g is piece-wise constant, discontinuities wrt x for

H(g+) ̸= H(g−) can only be sampled when g itself is discontinuous wrt x. We can therefore

recursively decompose g similar to f until we reach a Heaviside function H(h) such that

h ∈ ea. Based on this observation, we will prove it by induction. The base case proves

H(g) is continuous within the intervals [x− αϵ, x) ∪ (x, x + βϵ] when g ∈ ea. The induction

step proves the same thing but with g ∈ ēb, and assumes g is already continuous within the

intervals [x − αϵ, x) ∪ (x, x + βϵ]. Note here and in the subsequent discussions, we refer to

“within the interval” as meaning fixing θ⃗ and considering the 1D restriction of the function

to the x axis.

Base case: g ∈ ea. Because f is discontinuous at (x, θ⃗) wrt x, ∃ϵ′ > 0 such that

discontinuity can be sampled ∀ϵ ∈ (0, ϵ′]: H(g(x− αϵ)) ̸= H(g(x + βϵ)). Therefore g is not

locally zero (wrt x). Additionally, because real analytic functions that are not locally zero

have isolated zeros in 1D (sampling axis x), ∃ϵ > 0 s.t. (x, θ⃗) is the only zero for g(x′, θ⃗)

within the interval x′ ∈ [x − αϵ, x + βϵ], so we have the desired result for the case g ∈ ea:

(x, θ⃗) is the only discontinuity for H(g) within the claimed x′ intervals.

Induction step: g ∈ ēb and assuming g is continuous wrt x in the intervals [x− αϵ, x) ∪

(x, x+ βϵ]. As discussed before, because g is piece-wise constant, g being continuous within

the intervals [x−αϵ, x)∪(x, x+βϵ] implies g is constant for each connected intervals: [x−αϵ, x)

and (x, x + βϵ]. Therefore H(g) is continuous in the intervals [x− αϵ, x) ∪ (x, x + βϵ].

Now we discuss f is continuous wrt x at (x, θ⃗). If f ∈ ea, the conclusion is trivially true.

We therefore still assume f has intermediate values of the form H(g). And we prove this by

induction similarly. For the base case g ∈ ea, H(g) is continuous along x either indicates g
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is locally zero wrt x or g(x, θ⃗) ̸= 0. If g is locally zero wrt x, ϵ can be chosen appropriately

based on the size of the locally zero interval such that g stays zero. If g(x, θ⃗) ̸= 0, because g

is real analytic wrt x, it is locally Lipschitz continuous wrt x, which justifies a local interval

x′ ∈ [x − αϵ, x + βϵ] such that g(x′, θ⃗) ̸= 0. For the induction step where g ∈ eb, because

we already proved before that discontinuities wrt x are isolated, and because g is piece-wise

constant, ∃ϵ > 0 s.t. [x− αϵ, x + βϵ] is piece-wise constant, therefore f is continuous wrt x

in the interval. ■

We further define two outlier scenarios where our first-order correctness properties cannot

be proved everywhere, thus leading to the almost everywhere claims in our Theorem 1 and

2. Note Definition 11 and 12 characterizes when points already in Ci or Dr
i violate the

first-order correctness. This is different from Section 2.7.2.1, where pathological exceptions

are removed from the programs that we consider in our first-order correctness results. Also

note that locally zero is defined in Definition 5.

Definition 11 A function f ∈ ec evaluated at (x, θ⃗) is symmetric along the sampling axis

x if for some intermediate value g of f , g is not statically continuous, and at (x, θ⃗), g is

continuous, ∂g/∂x exists, ∂g/∂x is not locally zero wrt x, and there exists ϵk > 0 s.t. for all

ϵ ∈ (0, ϵk], g(x + βϵ, θ) = g(x− αϵ, θ). This implies ∂g
∂x

= 0 at (x, θ⃗).

Definition 12 A function f ∈ ec is multi-discontinuous at (x, θ⃗) ∈ dom(f) if any two

of its intermediate values are of the form H(gi), H(gj) such that gi, gj ∈ ea evalu-

ate to 0, and ∇gi,∇gj are linearly independent vectors at the given (x, θ⃗), where ∇ =

[∂/∂x, ∂/∂θ1, . . . , ∂/∂θn].

2.8.2 C and D-Simple Definitions

With the definitions in Section 2.8.1, we can now characterize the set of points in Definition 13

that we will show are absolutely first-order correct.
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Definition 13 For a function f ∈ ec, (x, θ⃗) ∈ Ci is C-simple if at (x, θ⃗), f is continuous

along the sampling axis and not symmetric along the sampling axis x.

Similarly, we want to characterize the set of points that are relatively first-order correct

as D-simple in Definition 15. However, because relatively first-order correct is applied on

the dilated discontinuous set Dr
i , we first need to define a remapping from dilated intervals

(x′, θ⃗) ∈ N r
i (x, θ⃗) back to discontinuous locations (x, θ⃗): this corresponds to τ in Theorem 2.

Note the existence of the remapping is guaranteed because Dr
i is defined in Definition 10 as

a union of N r
i (x, θ⃗).

Definition 14 ∀(x′, θ⃗) ∈ Dr
i , we define a remapping τ(x′, θ⃗) = (x, θ⃗) such that x ∈ Di and

x′ ∈ (x− βϵ′, x + αϵ′) for ϵ′ = rϵf (x, θ⃗).

Definition 15 For a function f ∈ ec, (x′, θ⃗) ∈ Dr
i is D-simple if τ(x′, θ⃗) is not at a multi-

discontinuity.

2.8.3 C and D-Simple Almost Everywhere Proof Sketch

Lemma 3 For a function f ∈ ēc and a parameter θi, C-simple points are almost everywhere

in Ci.

Proof sketch: We justify this using an equivalent statement: the set of points S that are

discontinuous along the sampling axis or symmetric along the sampling axis is measure zero

in Ci.

If f ∈ ēc is discontinuous along the sampling axis at (x, θ⃗), this implies g(x, θ⃗) = 0 for

some intermediate value H(g) of f with g ∈ ea ∪ eb. If g ∈ eb, then by recursing on the

definition of eb (recursing into nodes in the graph that are discontinuous wrt x), there is also

some intermediate value of the form H(h) such that h ∈ ea, and h(x, θ⃗) = 0. If we assume

every intermediate value of the form H(h) with h ∈ ea and h(x, θ⃗) = 0 has the property

that h is locally zero wrt x at (x, θ⃗), then f would be continuous wrt x at (x, θ⃗), therefore
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causing a contradiction. So for some intermediate value of the form H(h) with h ∈ ea and

h(x, θ⃗) = 0, h is not locally zero wrt x at (x, θ⃗). Note because h ∈ ea, h is real analytic as a

single-variate function wrt x within an open interval containing x intersected with dom(f).

Therefore, if we define Pd(θ⃗) as the set of points x s.t. (x, θ⃗) ∈ Ci and are discontinuous

along the sampling axis. we can conclude Pd(θ⃗) is a subset to the set of points that satisfies

h(x, θ⃗) = 0 and h not locally zero for finitely many real analytic representations h.

Similarly, if f is symmetric along the sampling axis at (x, θ⃗), there exists some interme-

diate value g ∈ ec such that g is continuous, ∂g/∂x = 0, and ∂g/∂x is not locally zero. Now

since g is continuous and by Lemma 2 discontinuities are isolated along x, we can choose

ϵ > 0 s.t. within a local region along x (i.e. an open interval (x− ϵ, x + ϵ) intersected with

dom(f), per Def. 5) all intermediate values of g with the form H(·) are constant, so g is a

sum, product, and/or composition of functions that are real analytic as a single-variate func-

tion of x within that 1D local region. Therefore, g and ∂g/∂x are real analytic single-variate

functions within that local region. Additionally, these real analytic functions in the local

region can be viewed as one of the finitely many possible local real analytic representations

of ∂g/∂x: H(·) can only be evaluated to 2 discrete values: {0, 1}. Because of these, we can

define Ps(θ⃗) as the set of points x s.t. (x, θ⃗) ∈ Ci and are symmetric along the sampling

axis, and conclude Ps(θ⃗) is a subset to the set of points that satisfies ∂g/∂x = 0 and ∂g/∂x

not locally zero for finitely many real analytic representations ∂g/∂x.

Given θ⃗, we now consider the set of points x s.t. (x, θ⃗) ∈ Ci and along the sampling

axis are symmetric or discontinuous wrt x: P (θ⃗) = Pd(θ⃗) ∪ Ps(θ⃗). We will prove P (θ⃗) is

measure zero by constructing its superset P ′(θ⃗) and instead proving P ′(θ⃗) is measure zero.

P ′(θ⃗) is constructed as the set of all zeros of all 1D real analytic (wrt x) local representations

for the intermediate values g of f and its gradient, ∂g/∂x, excluding points x where these

real analytic functions are locally zero. From the previous paragraph, we have justified

P ⊂ P ′ and there are finitely many such real analytic functions within the program f . A

not identically zero 1D function that is real analytic on an interval has countable zeros, and
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so the analytic functions (within suitable local regions) used to construct P ′ have countable

zeros, therefore µ1(P
′) = µ1(P ) = 0, where µ1 is the Lebesgue measure on R for the x axis.

We can further define µk to refer to the Lebesgue measure in Rk. Recall that we want to

prove the measure µn+1(S) = 0 where S is the set of points that are discontinuous along the

sampling axis or symmetric along the sampling axis in Ci, i.e. the union of P (θ⃗) for every

θ⃗. We can replace µn+1(S) with the Lebesgue integral
∫

1Sdµ = µn+1(S), apply Fubini’s

theorem considering µn+1 as a product measure, and find µn+1(S) = 0 after setting the

innermost integral (over x dimension) as 0 due to µ1(P (θ⃗)) = 0. ■

We would next like to show that D-simple points are almost everywhere in Dr
i . Intuitively,

we can do this because we have defined multi-discontinuities to be the intersection of two

manifolds that each is in general position so they each have dimension n, their intersection

is dimension n− 1, and the dilation operation in Dr
i increases dimension to n, which is still

measure zero in Rn+1. We formalize this intuition in a general Euclidean setting in Lemma 4,

where the set N(Z) corresponds to the “dilation operation”. We will then apply Lemma 4

to prove the almost everywhere result for D-simple points in Lemma 5.

Lemma 4 Assume U is an open subset of Rm, G1, G2 : U → R are continuously differ-

entiable on U . Define Z = {x ∈ U : G1(x) = G2(x) = 0}. Assume for each x ∈ Z,

∇G1,∇G2 are linearly independent vectors at x, where we use ∇ = [∂/∂x1 . . . ∂/∂xm]. De-

fine N(Z) =
⋃

x∈Z ν(x). Let ν(x) = ((x1 + a(x), x1 + b(x)) × {x2} × {x3} . . . × {xm}) ∩ U ,

a : U → R, b : U → R. Then µm(N(Z)) = 0 where µm is the Lebesgue measure in Rm.

Proof: We proceed similarly to Claim 1 of Mityagin [85, 86].

If x ∈ Z, by linear independence, we have ||∇G1(x)|| ≠ 0 and ||∇G2(x)|| ≠ 0. Thus,

Z = ∪kZk for:

Zk = {x ∈ Z : ||x|| ≤ k, ||∇Gi(x)|| ≥ 1/k for i=1,2, dist(x, UC) ≥ 1/k}
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The same as Mityagin we omit the last requirement if U = Rm, i.e. UC = ∅. Like Mityagin,

we note Zk is compact: clearly Zk is bounded, and it can be shown to be closed by noting

that for continuous F , limx→c F (x) = F (c), the non-strict inequalities are preserved at the

limit point, and so every limit point of Zk is in Zk, so by the Heine–Borel theorem Zk is

compact.

If x ∈ Z, we can use the implicit function theorem to find locally an m− 2 dimensional

subspace where G1(x) = G2(x) = 0 if we have full rank for the Jacobian. Specifically,

consider coordinates xi and xj. Then the Jacobian used in the implicit function theorem is:

J i,j =

∂G1/∂xi ∂G1/∂xj

∂G2/∂xi ∂G2/∂xj

 (2.15)

This has full rank when the two rows are linearly independent. If x ∈ Z, then by the

linear independence of ∇G1,∇G2, we can choose i ̸= j such that J i,j is full rank. This can

be shown by forming ∇G1 and ∇G2 into a 2 × n matrix of rank 2, observing that row and

column rank are equal, so that matrix has two linearly independent columns, which can be

taken as J i,j. Thus, by the implicit function theorem, any x ∈ Z has a neighborhood Q(x)

such that x is described by coordinates in an m− 2 dimensional manifold. If p ∈ ν(x) then

there exists t ∈ [0, 1] such that p = x + e1(a(x) + t(b(x) − a(x)), where e1 = [1, 0, 0, . . . , 0],

so we can parameterize N(Q(x)) by m− 1 dimensions. Therefore µm(N(Q(x))) = 0.

For Zk, consider the set of all open neighborhoods from the implicit function theorem,

i.e. {Q(x) : x ∈ Zk}. This is also an open cover of Zk. Because Zk is compact, we

can choose a finite subcover: choose the cover Q(x1), . . . , Q(xN) associated with points

x1 ∈ Zn, . . . , xN ∈ Zn. So µm(N(Zn)) = 0. Additionally, because Z = ∪kZk, so by countable

subadditivity of measures, µm(N(Z)) = 0. 4 ■

4Thanks to Boris Mityagin for elucidating details of his proof technique [86] which we followed in our
proof.
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Lemma 5 For a function f ∈ ec and a parameter θi, D-simple points are almost everywhere

in Dr
i .

Proof sketch: Using the 1D dilated intervals from Definition 9, define for any set S,

N r(S) = ∪s∈SN
r(s). We now justify a statement equivalent to what we want: given the

set of points Sd = {(x, θ⃗) ∈ dom(f) : f is multi-discontinuous at (x, θ⃗)}, we wish to show

µn+1(N
r(Sd)) = 0. We will apply Lemma 4 to prove this. Specifically, we use (x′, θ⃗) as the

n + 1 = m dimensions, and the union of the 1D interval endpoints in Definition 9 for N r

(i.e. x− βϵ′ and x + αϵ′) become the functions a, b in Lemma 4.

We next note that Nr(Sd) can be viewed as the union of a finite number of sets Nr(S
p
d):

Nr(Sd) = ∪p=1,...,PNr(S
p
d). Each Sp

d corresponds to one instance of multi-discontinuity in

Definition 12. Specifically, for each p, we choose from intermediate values H(gi), H(gj) or f

with gi ∈ ea and gj ∈ eb, and Sp
d is defined as the set of points where both gi and gj evaluate

to zero, and ∇gi, ∇gj are linearly independent (definition of multi-discontinuity). We will

use G1 = gi and G2 = gj for Lemma 4, and describe the choice of U as follows. We choose

any measurable open set U ′ containing Sd, and use U = U ′\D0, where D0 is the set of points

in dom(f) s.t. gi = gj = 0 and ∇gi,∇gj are linearly dependent: this leaves only the desired

points Sp
d in the zero set for Lemma 4. Here U can be shown open by considering that if

p ∈ U then (a) gi ̸= 0 or gj ̸= 0 or (b) gi = gj = 0 and ∇gi,∇gj are linearly independent: in

case (a) we can show the neighborhood around p exists in U directly, and in case (b) we can

choose a Jacobian in Lemma 4 with nonzero determinant, which is continuous wrt (x, θ⃗),

so we can likewise show the neighborhood around p exists. With all components chosen, we

can trivially apply Lemma 4 to get µn+1(N
r(Sp

d)) = 0. Finally, because Nr(Sd) is the union

of finitely many Nr(S
p
d): Nr(Sd) = ∪p=1,...,PNr(S

p
d), we get µn+1(N

r(Sd)) = 0. ■

2.8.4 Local Expansion for C and D-Simple Points

Because we show the correctness of our approximation by comparing it with a reference

pre-filtered gradient, our proof also involves computing the reference. We show if a function
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evaluation f(x, θ⃗) is either C-simple or D-simple, it can be locally expanded into the following

form to allow easy computation of the reference gradient.

Lemma 6 Local expansion: a function f1 ∈ ec is either C-simple or D-simple at (x, θ⃗)

⇒ ∃f2 = a+ b ·H(c) with a, b, c ∈ ea and ∃ϵ > 0 s.t. within the set S = [x−αϵ, x+ βϵ]× θ⃗,

there is at most one discontinuity of f1, and the function value of f1, f2 are identical within

S except when at the discontinuity, and their pre-filtered gradients are identical within S. If

f1 is C-simple at (x, θ⃗) then b = 0.

Proof sketch: The existence of ϵ can be justified because discontinuities are isolated on the

1D x axis (Lemma 2). The local expansion can be obtained by recursively evaluating step

functions that are not discontinuous at f(x, θ⃗) into 0 or 1 and merging step functions that

are discontinuous into the same form. This is only possible without multi-discontinuity,

and is guaranteed by the point being C-simple or D-simple. Additionally, because the local

expansion is identical with the original function f1 except for measure zero of discontinuous

points, their pre-filtered integrals are identical for the same ϵ because integral over a null set

is zero. This implies their pre-filtered gradients are identical as well. ■

2.8.4.1 Commuting Differentiation and Integration Operators

With the local expansion, we can easily compute the reference gradient similar to Section 2.3.

Note in the equations, we frequently commute the differentiation and integration operators

to simplify the computation into integral over the Dirac delta. In general, this commuting

is not allowed by the Leibniz integral rule because the integrand is discontinuous. How-

ever, in engineering context, this is usually valid when the gradient of the discontinuous

function is expressed using the Dirac delta notation. Intuitively, if we first split the inte-

gral into multiple integrals over continuous regions and apply Leibniz integral rule to each

of them, we get additional terms that differentiate the integral bounds, which corresponds

to the discontinuities. If we instead integrate the gradient with Dirac delta notation over

67



the entire region, integration over the Dirac delta gives the identical result to those extra

terms. Therefore the two approaches are equivalent. In this section, we formally prove that

commuting the differentiation and integration operators is valid when pre-filtering a local

expansion representation with the 1D box kernel.

Lemma 7 For a function f = a + b ·H(c) with a, b, c ∈ ea ⇒ ∃ϵ > 0 s.t.

∂

∂θi

∫ x+βϵ

x−αϵ

f(x′, θ⃗)dx′ =

∫ x+βϵ

x−αϵ

∂f(x′, θ⃗)

∂θi
dx′ (2.16)

Proof: If f is continuous in the interval (x − αϵ, x + βϵ), Equation 2.16 can be trivially

proved by applying the Leibniz integral rule. Therefore we focus on the case where discon-

tinuity can be sampled within the interval of the integral. Additionally, because a ∈ ea,

Equation 2.17 is trivially true as well due to Leibniz integral rule. And because additivity

holds both for differentiation and integration, our proof for Equation 2.16 can be reduced to

Equation 2.18

∂

∂θi

∫ x+βϵ

x−αϵ

a(x′, θ⃗)dx′ =

∫ x+βϵ

x−αϵ

∂a(x′, θ⃗)

∂θi
dx′ (2.17)

∂

∂θi

∫ x+βϵ

x−αϵ

b(x′, θ⃗) ·H(c(x′, θ⃗))dx′ ?
=

∫ x+βϵ

x−αϵ

∂(b(x′, θ⃗) ·H(c(x′, θ⃗)))

∂θi
dx′ (2.18)

Because c ∈ ea, we can use the isolated discontinuity property in Lemma 2 to choose ϵ > 0

such that only one discontinuity xd is sampled within the interval of the integral. Without

loss of generality, we also assume H(c) evaluates to 0 within the interval (x − αϵ, xd) and

evaluates to 1 within the interval (xd, x+βϵ). In other words, H(c−) = 0 and H(c+) = 1 when

sampling the discontinuity at xd. We can now rewrite the left-hand side of Equation 2.18

into the following:
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∂

∂θi

∫ x+βϵ

x−αϵ

b(x′, θ⃗) ·H(c(x′, θ⃗))dx′ =
∂

∂θi

∫ x+βϵ

xd

b(x′, θ⃗)dx′

Assuming H(c) = 0 when x′ ∈ (x− αϵ, xd)

= − b(xd, θ⃗) · ∂xd

∂θi
+

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′

Applying Leibniz integral rule

(2.19)

Because xd represents the discontinuity, its derivative wrt θi can be computed using

the implicit function theorem by taking the total differentiation wrt θi on both sides of

c(xd, θ⃗) = 0.

dc(xd, θ⃗i)

dθi
=

∂c

∂x

∂xd

∂θi
+

∂c

∂θi
= 0

⇒ ∂xd

∂θi
= −∂c/∂θi

∂c/∂x

(2.20)

In Equation 2.20, ∂c/∂x and ∂c/∂θi represents the partial derivative of c wrt its input

argument that aligns with the sampling axis, and its input argument that is the i’s entry of

θ respectively. We now plug Equation 2.20 into Equation 2.19.

∂

∂θi

∫ x+βϵ

x−αϵ

b(x′, θ⃗) ·H(c(x′, θ⃗))dx′ = − b(xd, θ⃗) · (−∂c/∂θi
∂c/∂x

) +

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′

=b(xd, θ⃗) · ∂c/∂θi
∂c/∂x

+

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′

(2.21)

We now rewrite the right-hand side of Equation 2.18 and show it is identical to Equa-

tion 2.21.
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∫ x+βϵ

x−αϵ

∂(b ·H(c))

∂θi
dx′ =

∫ x+βϵ

x−αϵ

(
∂b(x′, θ⃗)

∂θi
H(c(x′, θ⃗)) + b(x′, θ⃗)

∂H(c(x′, θ⃗))

∂θi
)dx′

=

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′ +

∫ x+βϵ

x−αϵ

b(x′, θ⃗)
∂H(c(x′, θ⃗))

∂θi
dx′

Assuming H(c) = 0 when x′ ∈ (x− αϵ, xd)

=

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′ +

∫ x+βϵ

x−αϵ

b(x′, θ⃗)δ(c(x′, θ⃗))
∂c

∂θi
dx′

=

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′ +

∫ x+βϵ

x−αϵ

b(x′, θ⃗)
δ(c(x− xd))

|∂c/∂x|
∂c

∂θi
dx′

Applying Dirac delta scaling property

=

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′ + b(xd, θ⃗)

∂c/∂θi
|∂c/∂x|

Applying Dirac delta sifting property

=

∫ x+βϵ

xd

∂b(x′, θ⃗)

∂θi
dx′ + b(xd, θ⃗)

∂c/∂θi
∂c/∂x

∂c/∂x > 0 because H(c−) = 0 and H(c+) = 1 (2.22a)

Comparing Equation 2.21 and 2.22a, we conclude that the left and right-hand sides of

Equation 2.18 are indeed identical, therefore Equation 2.16 in Lemma 7 also holds. ■

2.8.5 Existence of ϵf in Theorem 1 and 2

We now characterize the ϵf used in Theorem 1 and 2 and briefly justify its existence. We

show a certain ϵf exists that has strong properties needed next in Section 2.8.6 for the proof

by induction over subsets of our DSL.

Lemma 8 ∀f ∈ ēc that is either C-simple or D-simple at (x, θ⃗) ∈ dom(f), ∃ϵf (x, θ⃗) > 0

such that ∀ϵ ∈ (0, ϵf ] all of the following are satisfied:

• ∀x′ ∈ [x − (α + β)ϵ, x) ∪ (x, x + (α + β)ϵ] such that (x′, θ⃗) ∈ dom(f), we have f is

continuous at (x′, θ⃗) along x. This is a stronger property than the RHS of Lemma 6:
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it is compatible with local expansions, and additionally, for C-simple locations, it lets

us avoid any discontinuities in the neighborhood when showing absolutely first-order

correct.

• ∀g that is the intermediate value of f and is not locally zero wrt x, g(x+βϵ) ̸= g(x−αϵ).

This lets our composition rule exclude the zero denominators.

• There are certain expressions e that are used in our lemmas that evaluate to a nonzero

value at (x, θ⃗) and do not depend on ϵ which are derived from some intermediate values

in the program f . For these, we limit ϵ to be small enough so that 1/(e + O(ϵ)) =

1/e+O(ϵ). This lets us rewrite Taylor expansions into the desired form for first-order

correctness.

Proof sketch: The existence of ϵf in the first requirement is a direct application of the

isolated discontinuities property of Lemma 2. For the second requirement, if g is discon-

tinuous at (x, θ⃗), according to Lemma 6 we have g = a + b · H(c). Because both a and b

are real analytic, ϵf doesn’t exist implies b(x, θ⃗) = 0, which is discontinuity degeneracy and

is excluded from ēc, therefore raising a contradiction. If g(x, θ⃗) is continuous, then local

expansion reduces to g = a where a ∈ ea. If ∂a
∂x

̸= 0, because ∂a
∂x

is real analytic and locally

Lipschitz continuous, ∃ϵ > 0 such that a is monotonic in the local region, therefore the re-

quirement is satisfied. If ∂a
∂x

= 0, the requirement is violated only when f is symmetric along

the sampling axis x, which is excluded from C-simple points, therefore raising a contradic-

tion. The third requirement is valid because in our proof, O(ϵ) is always used to express

polynomials of ϵ with all other terms being locally bounded. Therefore if ϵf does not exist,

it means O(ϵ) involves the multiplication of ϵ with an unbounded term and contradicts how

O(ϵ) is constructed in the proof.

Note in the first requirement, the local neighborhood is larger than the kernel support

when pre-filtering at (x, θ⃗). This is because we state relatively first-order correctness in a
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dilated set Dr
i , and when we pre-filter near the boundary of Dr

i , we still need the kernel

support to be within dom(f) and include only one discontinuity. ■

Once ϵf is defined, the existence of ϵri (x
′, θ⃗) can be easily justified using the remapping

in Definition 14: ϵri (x
′, θ⃗) = rϵf (τ(x′, θ⃗), θ⃗).

2.8.6 First-Order Correctness Proof by Induction

This section proves Theorem 1 and 2 by induction on different operators. We start with

functions that are constants or only depend on x or one of θi as the base case. After that,

we show inductions steps on every operator our DSL includes.

In this section, whenever x /∈ Di, xd and τ(x, θ⃗) are always used interchangeably to

represent the discontinuity of interest. For simplicity, we always assume in the presence of

a discontinuity xd, H(c+) = 1 and H(c−) = 0 similar to Section 2.8.4.1. The opposite case

can be proved under the identical process.

As a shorthand, for a function f and r ∈ (0, 1], our usage for first-order correct at (x, θ)

for intermediate value g of f is based on context: if g is discontinuous wrt θi at (τ(x, θ⃗), θ⃗),

then it means relatively first order correct, and if g is continuous wrt θi at (τ(x, θ⃗), θ⃗), then

it means absolutely first-order correct. Additionally, we will denote Ci(f), Di(f), Dr
i (f) as

Ci, Di, D
r
i specific to function f , respectively.

2.8.6.1 Base Case

We start our proof with the base case, where function f is either constant, or depends only

on x or one of θi.

72



Lemma 9 Given f in the following form, ∀(x, θ⃗) ∈ dom(f) and ∀ϵ > 0, f is absolutely

first-order correct.

f(x, θ⃗) = C, constant C ∈ R

f(x, θ⃗) = x

f(x, θ⃗) = θi

Note for the functions in Lemma 9, Dr
i is always a null set. Therefore it is vacuous to

discuss the relatively first-order correctness properties on Dr
i .

Proof: The first two cases are trivial: both ours and the reference gradient result in 0.

We only need to prove ∂Oθi
∂θi

is correct by comparing both sides of Equation 2.13.

∂Oθi
∂θi

=1

∂θ̂i
∂θi

=
∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

θidx
′

=
∂

∂θi
θi = 1

(2.23)

Equation 2.13 therefore holds because its left and right-hand sides are equal. ■

2.8.6.2 Induction on Addition

We first present the result for absolutely first-order correct, followed by relatively first-order

correct.

Lemma 10 Given a function f = g + h with f, g, h ∈ ēc, ∀(x, θ⃗) ∈ Ci that are C-simple

for f and ∀ϵ ∈ (0, ϵf (x, θ⃗)], if g, h are absolutely first-order correct, then f is absolutely

first-order correct.

Proof: The reference gradient of f can be computed as follows:
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∂f̂

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(g + h)dx′

=
∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

gdx′ +
∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

hdx′

=
∂ĝ

∂θi
+

∂ĥ

∂θi

(2.24)

Because (x, θ⃗) is C-simple, discontinuity is excluded, we have (x, θ⃗) ∈ Ci(g) and (x, θ⃗) ∈

Ci(h) as well.

∂Of

∂θi
=
∂kg

∂θi
+

∂kh

∂θi

=
∂ĝ

∂θi
+

∂ĥ

∂θi
+ O(ϵ)

Using Equation 2.13 to g, h

(2.25)

Comparing Equation 2.24 and 2.25, we conclude Equation 2.13 holds for f . ■

Lemma 11 Given a function f = g + h with f, g, h ∈ ēc, ∀r ∈ (0, 1],∀(x, θ⃗) ∈ Dr
i that

are D-simple for f , if g, h are first-order correct for ϵ = rϵf (τ(x, θ⃗), θ⃗), then f is relatively

first-order correct for the same ϵ.

Proof: We split the proof into two cases based on whether either or both of g, h are

discontinuous at (τ(x, θ⃗), θ⃗). Note Lemma 11 discusses D-simple points, therefore we do

not need to consider the case when both g and h are continuous, because that implies f is

continuous at (τ(x, θ⃗), θ⃗), leaving Dr
i being a null set. Because we prove by induction, we

are agnostic to how the gradient to g and h are approximated as long as they are correct

under the definition. Therefore, we use ∂k to denote that it can be either from ours (O),

AD, or any other approximation.
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Case 1: g is discontinuous at (τ(x, θ⃗), θ⃗), but h is continuous at (τ(x, θ⃗), θ⃗) (the same

reasoning also goes with the inverse). Based on the premise in Lemma 11, we have g is

relatively first-order correct and h is absolutely first-order correct. We will start with the

left-hand side of Equation 2.14 and show it is equivalent to the right-hand side.

∂Of
∂θi

∂f̂
∂θi

=

∂kg
∂θi

+ ∂kh
∂θi

∂ĝ
∂θi

+ ∂ĥ
∂θi

=

∂kg
∂θi

+ ∂ĥ
∂θi

+ O(ϵ)

∂ĝ
∂θi

+ ∂ĥ
∂θi

Using Equation 2.13 to h

=

∂kg
∂θi

/ ∂ĝ
∂θi

+ ∂ĥ
∂θi

/ ∂ĝ
∂θi

+ O(ϵ)

1 + ∂ĥ
∂θi

/ ∂ĝ
∂θi

=
1 + O(ϵ) + ∂ĥ

∂θi
/ ∂ĝ
∂θi

+ O(ϵ)

1 + ∂ĥ
∂θi

/ ∂ĝ
∂θi

Using Equation 2.14 to g

=1 + O(ϵ)

(2.26)

Case 2: Both g, h are discontinuous at (τ(x, θ⃗), θ⃗). This implies both g, h are relatively

first-order correct. Similarly, we start with the left-hand side of Equation 2.14.

75



∂Of
∂θi

∂f̂
∂θi

=

∂kg
∂θi

+ ∂kh
∂θi

∂ĝ
∂θi

+ ∂ĥ
∂θi

=

∂kg
∂θi

/( ∂ĝ
∂θi

· ∂ĥ
∂θi

) + ∂kh
∂θi

/( ∂ĝ
∂θi

· ∂ĥ
∂θi

)

1/ ∂ĥ
∂θi

+ 1/ ∂ĝ
∂θi

=
(1 + O(ϵ))/ ∂ĥ

∂θi
+ (1 + O(ϵ)/ ∂ĝ

∂θi

1/ ∂ĥ
∂θi

+ 1/ ∂ĝ
∂θi

Using Equation 2.14 to g, h

Denominator nonzero because discontinuity degeneracy excluded

=1 + O(ϵ)

(2.27)

Combining both cases, we conclude f is always relatively first-order correct. ■

2.8.6.3 Induction on Multiplication

Lemma 12 Given a function f = g ·h with f, g, h ∈ ēc, ∀(x, θ⃗) ∈ Ci that are C-simple for f

and ∀ϵ ∈ (0, ϵf (x, θ⃗)], if g, h are absolutely first-order correct, then f is absolutely first-order

correct.

Proof: Because (x, θ⃗) is C-simple, f, g and h are all continuous at (x, θ⃗). Therefore, based

on Lemma 6, we can apply local expansion to g and h and rewrite them into the following:

g ≡ag, ag ∈ ea

h ≡ah, ah ∈ ea

(2.28)

Because f = g · h, f can also be rewritten using the local expansion of g and h.

f = g · h = ag · ah (2.29)

We next compute the reference pre-filtered gradient for f .
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∂f̂

∂θi
=

∂

∂θi

∫ x+βϵ

x−αϵ

agahdx
′

=

∫ x+βϵ

x−αϵ

(ag
∂ah
∂θi

+ ah
∂ag
∂θi

)dx′
(2.30)

Finally, we can compute our gradient approximation.

∂Of

∂θi
=

1

2
(h+ + h−)

∂kg

∂θi
+

1

2
(g+ + g−)

∂kh

∂θi

=
1

2
(a+h + a−h )

∂kg

∂θi
+

1

2
(a+g + a−g )

∂kh

∂θi
+ O(ϵ)

=ah
∂kg

∂θi
+ ag

∂kh

∂θi
+ O(ϵ)

ag, ah are locally Lipschitz continuous

=ah
∂ĝ

∂θi
+ ag

∂ĥ

∂θi
+ O(ϵ) (2.31a)

Using Equation 2.13 to g, h

=
1

(α + β)ϵ
(ah

∫ x+βϵ

x−αϵ

∂ag
∂θi

dx′ + ag

∫ x+βϵ

x−αϵ

∂ah
∂θi

dx′) + O(ϵ)

Applying Equation 2.2, swapping integral operator in pre-filtering with differentiation

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

[ah
∂ag
∂θi

+ ag
∂ah
∂θi

]dx′ + O(ϵ)

ag, ah being locally Lipschitz continuous

=
∂f̂

∂θi
+ O(ϵ)

Applying Equation 2.30 (2.31b)

Comparing Equation 2.31b with Equation 2.13, we conclude that f is absolutely first-

order correct. ■

77



Lemma 13 Given a function f = g · h with f, g, h ∈ ēc, ∀r ∈ (0, 1],∀(x, θ⃗) ∈ Dr
i that

are D-simple for f , if g, h are first-order correct for ϵ = rϵf (τ(x, θ⃗), θ⃗), then f is relatively

first-order correct for the same ϵ.

Proof: We first apply Lemma 6 to locally expand g and h into the following:

g =ag + bg ·H(cg) ag, bg, cg ∈ ea

h =ah + bh ·H(ch) ah, bh, ch ∈ ea

(2.32)

Note because f ∈ ēc, multi-discontinuity is excluded. This means if both g and h are

discontinuous at (xd, θ⃗), ∇cg and ∇ch will be linearly dependent. While cg and ch are not

necessarily linearly dependent, in our proof, we never evaluate the function values of cg and

ch, but only evaluate their derivatives in the form ∂c/∂θ
∂c/∂x

. Therefore for brevity, we will assume

c = cg = ch. Based on the local expansion of g and h, we can rewrite f into the following.

f = g · h = agah + (agbh + bgah + bgbh) ·H(c) (2.33)

We next compute the reference pre-filtered gradient for f . Note because Lemma 13 dis-

cusses D-simple sets, this implies the discontinuity xd is already sampled within the interval

(x− αϵ, x + βϵ).

∂f̂

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

[agah + (agbh + bgah + bgbh) ·H(c)]dx′

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(
∂agah
∂θi

+
∂(agbh + bgah + bgbh)

∂θi
H(c)) + dx′

+
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(agbh + bgah + bgbh)δ(c)
∂c

∂θi
dx′

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(
∂agah
∂θi

+
∂(agbh + bgah + bgbh)

∂θi
H(c))dx′
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+
(agbh + bgah + bgbh) ∂c

∂θ

(α + β)ϵ| ∂c
∂x
| |xd

(2.34a)

Applying sifting and scaling properties to the Dirac delta

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

∂agah
∂θi

dx′ +
1

(α + β)ϵ

∫ x+βϵ

xd

∂(agbh + bgah + bgbh)

∂θi
dx′

+
(agbh + bgah + bgbh) ∂c

∂θ

(α + β)ϵ| ∂c
∂x
| |xd

Assuming H(c−) = 0 and H(c+) = 1

=
1

(α + β)ϵ
(
∂agah
∂θi

(α + β)ϵ +
∂(agbh + bgah + bgbh)

∂θi
(x + βϵ− xd))

+
(agbh + bgah + bgbh) ∂c

∂θ

(α + β)ϵ| ∂c
∂x
| |xd

+ O(ϵ) (2.34b)

ag, ah, bg, bh and their gradients are locally Lipschitz continuous

=
1

(α + β)ϵ
(O(ϵ) + O(ϵ)) +

(agbh + bgah + bgbh) ∂c
∂θ

(α + β)ϵ| ∂c
∂x
| |xd

+ O(ϵ)

Using xd ∈ (x− αϵ, x+ βϵ)

ag, ah, bg, bh and their gradients are locally bounded

=
1

(α + β)ϵ
(
(agbh + bgah + bgbh) ∂c

∂θi

| ∂c
∂x
| |xd

+ O(ϵ) + O(ϵ2))

=
1

(α + β)ϵ
(
(agbh + bgah + bgbh) ∂c

∂θi

| ∂c
∂x
| |xd

+ O(ϵ)) (2.34c)

Similarly, we can compute the reference pre-filtered gradient for g (the same also holds

for h). When g is continuous, its pre-filtered gradient can be trivially obtained by expanding

Equation 2.2, therefore we focus on the case when g is discontinuous at (τ(x, θ⃗), θ⃗).

∂ĝ

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(ag + bg ·H(c))dx′

=
1

(α + β)ϵ
(

∫ x+βϵ

x−αϵ

(
∂ag
∂θi

+
∂bg
∂θi

H(c))dx′ +
bg

∂c
∂θi

| ∂c
∂x
| |xd

) (2.35a)

Scaling and sifting property for Dirac delta
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=
1

(α + β)ϵ
(

∫ x+βϵ

x−αϵ

∂ag
∂θi

dx′ +

∫ x+βϵ

xd

∂bg
∂θi

dx′ +
bg

∂c
∂θi

| ∂c
∂x
| |xd

)

Assuming H(c−) = 0 and H(c+) = 1

=
1

(α + β)ϵ
(
∂ag
∂θi

(α + β)ϵ +
∂bg
∂θi

(x + βϵ− xd) +
bg

∂c
∂θi

| ∂c
∂x
| |xd

) + O(ϵ)

Gradients for ag, bg are locally Lipschitz continuous

=
1

(α + β)ϵ
(O(ϵ) + O(ϵ) +

bg
∂c
∂θi

| ∂c
∂x
| |xd

+ O(ϵ2))

Using xd ∈ (x− αϵ, x+ βϵ) and gradients for ag, bg are locally bounded

=
1

(α + β)ϵ
(
bg

∂c
∂θi

| ∂c
∂x
| |xd

+ O(ϵ)) (2.35b)

We are ready to derive the relatively first-order result for f . Similar to the addition

in Section 2.8.6.2, we split into two cases, only one of g or h is discontinuous or both are

discontinuous. We similarly use ∂k for the inductive gradient for g or h to denote that we

are agnostic to how they are computed.

Case 1: g is discontinuous at (τ(x, θ⃗), θ⃗), but h is continuous at (τ(x, θ⃗), θ⃗) (the same

reasoning also goes with the inverse). This indicates bg ̸= 0 and bh = 0.

∂Of
∂θi

∂f̂
∂θi

=(α + β)ϵ
1
2
(a+h + a−h )∂kg

∂θi
+ 1

2
(g+ + g−)∂kh

∂θi

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

Using Equation 2.34c and bh = 0

=(α + β)ϵ
1
2
(a+h + a−h )∂kg

∂θi
+ 1

2
(g+ + g−) ∂ĥ

∂θi
+ O(ϵ)

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

h is absolutely first-order correct

=
ah

∂kg
∂θi

(α + β)ϵ + 1
2
(g+ + g−)∂âh

∂θi
(α + β)ϵ + O(ϵ)

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

Using bh = 0 and ah is locally Lipschitz continuous
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=
ah

∂kg
∂θi

(α + β)ϵ + O(ϵ)

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

(2.36a)

Using ah, ∂ah/∂θi and g are locally bounded

=
ah

∂kg
∂θi

(α + β)ϵ

bgah
∂c
∂θ

| ∂c
∂x

| |xd

+ O(ϵ) (2.36b)

Nonzero denominator: x ∈ Di →
∂c

∂θi
̸= 0

Discontinuities with roots of order n ≥ 2 are excluded from Di(n = 2) and ēc →
∂c

∂x
̸= 0

Discontinuity degeneracy is exclude from ēc → bgah ̸= 0

O(ϵ) in the denominator can be removed per the third requirement of Lemma 8

=
(α + β)ϵah

∂kg
∂θi

∂ĝ
∂θi

/ ∂ĝ
∂θi

bgah
∂c
∂θ

| ∂c
∂x

| |xd

+ O(ϵ)

=
(α + β)ϵah(1 + O(ϵ)) 1

(α+β)ϵ
(
bg

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))

bgah
∂c
∂θ

| ∂c
∂x

| |xd

+ O(ϵ)

Using Equation 2.14 and 2.35b to g

=
ah(x, θ⃗)(1 + O(ϵ))

ah(xd, θ⃗)
+ O(ϵ)

=1 + O(ϵ)

Using ah is locally Lipschitz continuous

Case 2: Both g, h are discontinuous at (τ(x, θ⃗), θ⃗). This indicates bg ̸= 0 and bh ̸= 0.

∂Of
∂θi

∂f̂
∂θi

=(α + β)ϵ
1
2
(h+ + h−)∂kg

∂θi
+ 1

2
(g+ + g−)∂kh

∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ)

Using Equation 2.34c

=(α + β)ϵ
1
2
(a+h + a−h + b+h )∂kg

∂θi
+ 1

2
(a+g + a−g + b+g )∂kh

∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)
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Moving O(ϵ) from denominator to numerator: similar to Equation 2.36b

Assuming H(c−) = 0 and H(c+) = 1

=(α + β)ϵ
(ah + bh

2
+ O(ϵ))∂kg

∂θi
+ (ag + bg

2
+ O(ϵ))∂kh

∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

ag, bg, ah, bh are locally Lipschitz continuous

=(α + β)ϵ
(ah + bh

2
+ O(ϵ))∂kg

∂θi

∂ĝ
∂θi

/ ∂ĝ
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ (α + β)ϵ
(ag + bg

2
+ O(ϵ))∂kh

∂θi

∂ĥ
∂θi

/ ∂ĥ
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

=
(ah + bh/2 + O(ϵ))(1 + O(ϵ))( bg∂c/∂θi|∂c/∂x| |xd

+ O(ϵ))

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+
(ag + bg/2 + O(ϵ))(1 + O(ϵ))( bh∂c/∂θi|∂c/∂x| |xd

+ O(ϵ))

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

Using Equation 2.14 and 2.35b to g, h

=
(ah + bh

2
) |x bg |xd

+ (ag + bg
2

) |x bh |xd

(agbh + bgah + bgbh) |xd

+ O(ϵ)

=
(ah + bh

2
)bg + (ag + bg

2
)bh

(agbh + bgah + bgbh)
|xd

+ O(ϵ)

ag, bg, ah, bh are locally Lipschitz continuous

=1 + O(ϵ)

Combining both cases, we conclude that f is always relatively first-order correct. ■

2.8.6.4 Induction on Heaviside Step Function

Lemma 14 Given a function f = H(g) with f, g ∈ ēc, ∀(x, θ⃗) ∈ Ci that are C-simple for

f and ∀ϵ ∈ (0, ϵf (x, θ⃗)], if g is absolutely first-order correct, then f is absolutely first-order

correct.

Proof: Lemma 14 is trivially true because, for C-simple points, both our approximation

and reference gradient are zero. ■
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Lemma 15 Given a function f = H(g) with f, g ∈ ēc, ∀r ∈ (0, 1],∀(x, θ⃗) ∈ Dr
i that are

D-simple for f , if g is first-order correct for ϵ = rϵf (τ(x, θ⃗), θ⃗), then f is relatively first-order

correct for the same ϵ.

Proof: We prove by two cases, whether g is continuous at (τ(x, θ⃗), θ⃗) or not. In both

cases, we first need to locally expand g by applying Lemma 6.

g = ag + bg ·H(cg) ag, bg, cg ∈ ea (2.38)

Case 1: g is continuous at (τ(x, θ⃗), θ⃗). This indicates bg = 0. We first compute the

reference pre-filtered gradient for f̂ .

∂f̂

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

H(ag)dx
′

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

δ(ag)
∂ag
∂θi

dx′

=

∂ag
∂θi

(α + β)ϵ|∂ag
∂x

|
|xd

(2.39)

With Equation 2.39, we are now ready to expand the left-hand side of Equation 2.14.

∂Of
∂θi

∂f̂
∂θi

=

∂kg
∂θi

/|g+ − g−|
∂ag
∂θi

(α+β)ϵ| ∂ag
∂x

|
|xd

Using Equation 2.39

=
( ∂ĝ
∂θi

+ O(ϵ))/|a+g − a−g |
∂ag
∂θi

(α+β)ϵ| ∂ag
∂x

|
|xd

Using Equation 2.13 and bg = 0

=

∂âg
∂θi

/|a+g − a−g |
∂ag
∂θi

(α+β)ϵ| ∂ag
∂x

|
|xd

+ O(ϵ)
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Using bg = 0

=

∂ag
∂θi

|xd
/|a+g − a−g |

∂ag
∂θi

(α+β)ϵ| ∂ag
∂x

|
|xd

+ O(ϵ)

Expanding the âg using Equation 2.2 and using
∂ag
∂θi

is locally Lipschitz continuous

=
|∂ag
∂x

| |xd

|a+g −a−g |
(α+β)ϵ

+ O(ϵ)

=
|∂ag
∂x

| |xd

| ∂ag
∂x

|xd ((α+β)ϵ+O(ϵ2))|
(α+β)ϵ

+ O(ϵ)

First order Taylor expansion on ag around xd

=
|∂ag
∂x

| |xd

|∂ag
∂x

| |xd
+ O(ϵ)

+ O(ϵ)

=1 + O(ϵ) (2.40a)

Moving O(ϵ) from denominator to numerator: similar to Equation 2.36b

Case 2: g is discontinuous at (τ(x, θ⃗), θ⃗). This indicates bg ̸= 0. Because f ∈ ēc, based

on the DSL construction, the input arguments to step functions can either be piece-wise

constant (eb) or continuous (ea). Therefore because g is also discontinuous wrt x at τ(x, θ⃗),

we know g ∈ eb, and can be locally expanded as g = ag + bg ·H(c) with ag, bg being constant,

c ∈ ea. Accordingly, f can be expanded as f = H(ag + bg · H(c)) = sign(bg) · H(c). The

reference gradient is computed as follows.

∂f̂

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

sign(bg) ·H(c)dx′

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

sign(bg)δ(c)
∂c

∂θi
dx′

=
sign(bg)

∂c
∂θi

(α + β)ϵ| ∂c
∂x
| |xd

(2.41)

Similarly, the reference gradient of g can be computed.
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∂ĝ

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(ag + bg ·H(c))dx′

=
1

(α + β)ϵ

bg
∂c
∂θi

| ∂c
∂x
| |xd

ag, bg are constants

(2.42)

We now apply our gradient approximation and start from the LHS of Equation 2.14 to

show its RHS.

∂Of
∂θi

∂f̂
∂θi

=

∂Og
∂θi

/|g+ − g−|
sign(bg)

∂c
∂θi

(α+β)ϵ| ∂c
∂x

| |xd

Using Equation 2.41

=

∂Og
∂θi

∂ĝ
∂θi

/(|g+ − g−| ∂ĝ
∂θi

)

sign(bg)
∂c
∂θi

(α+β)ϵ| ∂c
∂x

| |xd

=

∂ĝ
∂θi

(1 + O(ϵ)/|g+ − g−|
sign(bg)

∂c
∂θi

(α+β)ϵ| ∂c
∂x

| |xd

Using Equation 2.14 to g.

=

1
(α+β)ϵ

bg
∂c
∂θi

| ∂c
∂x

| |xd
(1 + O(ϵ))/|g+ − g−|

sign(bg)
∂c
∂θi

(α+β)ϵ| ∂c
∂x

| |xd

Using Equation 2.42

=
sign(bg) · bg |xd

|g+ − g−| + O(ϵ)

=
sign(bg) · bg
|ag + bg − ag|

+ O(ϵ)

Assuming H(c−) = 0 and H(c+) = 1.

=1 + O(ϵ) (2.43a)

bg ̸= 0 because discontinuity degeneracy is excluded from ēc.
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Combining both cases, we can now claim f is relatively first-order correct. ■

2.8.6.5 Induction on Generic Function Composition

Lemma 16 Given a function f = h(g) with f, g ∈ ēc and h being a continuous unary

function, ∀(x, θ⃗) ∈ Ci that are C-simple for f and ∀ϵ ∈ (0, ϵf (x, θ⃗)], if g is absolutely first-

order correct, then f is absolutely first-order correct.

Proof: Similar to previous proofs, we can first apply local expansion to g and compute f

from it. Because (x, θ⃗) ∈ Ci, g is continuous at (x, θ⃗) and therefore bg = 0.

g =ag ag ∈ ea

f =h(ag)

(2.44)

Because our compiler applies static analysis to g and chooses between one of the two

composition rules, we will discuss them separately.

Case 1: h(g) is statically differentiable. This implies g is statically differentiable as well.

∂Of

∂θi
=h′(g)

∂kg

∂θi

=h′(g)
∂ĝ

∂θi
+ O(ϵ) (2.45a)

Using Equation 2.13 to g and h′(g) bounded

=
1

(α + β)ϵ
h′(g)

∫ x+βϵ

x−αϵ

∂g

∂θi
dx′ + O(ϵ)

Expanding ĝ using Equation 2.2

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

h′(g)
∂g

∂θi
dx′ + O(ϵ)

Using g = ag is locally Lipschitz continuous
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=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

∂h(g)

∂θi
dx′ + O(ϵ)

=
∂f̂

∂θi
+ O(ϵ)

Case 2: h(g) is not statically differentiable.

∂Of

∂θi
=
h(g+) − h(g−)

g+ − g−
∂kg

∂θi

=
h′(g)∂

ng
∂x

[(α + β)ϵ]n + O(ϵn+1)
∂ng
∂x

[(α + β)ϵ]n + O(ϵn+1)
· ∂kg
∂θi

Applying Taylor expansion and assuming
∂kg

∂x
= 0 ∀ k < n

n > 0 exists because ēc excludes part dependency on x

=h′(g)
∂kg

∂θi
+ O(ϵ)

O(ϵ) in the denominator can be removed per the third requirement of Lemma 8

and because symmetric along the sampling axis is excluded from Ci

=h′(g)
∂ĝ

∂θi
+ O(ϵ) (2.46a)

Using h′(g) is bounded and applying Equation 2.13 to g

=
∂f̂

∂θi
+ O(ϵ)

Following the proof in case 1 starting from Equation 2.45a

Combining both cases, we can now claim f is absolutely first-order correct. ■

Lemma 17 Given a function f = h(g) with f, g ∈ ēc and h being a continuous unary

function, ∀r ∈ (0, 1],∀(x, θ⃗) ∈ Dr
i that are D-simple for f , if g is first-order correct for

ϵ = rϵf (τ(x, θ⃗), θ⃗), then f is relatively first-order correct for the same ϵ.
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Proof: Because h is a continuous unary operator, (τ(x, θ⃗), θ⃗) is discontinuous on f =

h(g) indicates it’s discontinuous on h. Therefore, when applying local expansion to g as in

Equation 2.47, we have bg ̸= 0 and ∂c
∂θi

̸= 0.

g =ag + bg ·H(c) ag, bg, c ∈ ea

f =h(ag) + (h(ag + bg) − h(ag)) ·H(c)

(2.47)

Next, we can compute the reference pre-filtered gradient for f .

∂f̂

∂θi
=

∂

∂θi

1

(α + β)ϵ

∫ x+βϵ

x−αϵ

[h(ag) + (h(ag + bg) − h(ag))H(c)]dx′

=
1

(α + β)ϵ

∫ x+βϵ

x−αϵ

(
∂h(ag)

∂θi
+

∂(h(ag + bg) − h(ag))

∂θi
H(c)dx′ +

h(ag + bg) − h(ag)
∂c
∂θi

(α + β)ϵ| ∂c
∂x
| |xd

Applying scaling and sifting property to the Dirac delta

=
1

(α + β)ϵ
(
∂h(ag)

∂θi
(α + β)ϵ +

∂(h(ag + bg) − h(ag))

∂θi
· x + βϵ− xd + O(ϵ))

+
h(ag + bg) − h(ag)

∂c
∂θi

(α + β)ϵ| ∂c
∂x
| |xd

Gradients of h(ag) and h(ag + bg) are locally Lipschitz continuous

=
1

(α + β)ϵ
(O(ϵ) + O(ϵ) + O(ϵ)) +

h(ag + bg) − h(ag)
∂c
∂θi

(α + β)ϵ| ∂c
∂x
| |xd

Gradients of h(ag) and h(ag + bg) are locally bounded

=
1

(α + β)ϵ
(
h(ag + bg) − h(ag)

∂c
∂θi

| ∂c
∂x
| |xd

+ O(ϵ)) (2.48a)

We are now ready to expand the left-hand side of Equation 2.14.

∂Of
∂θi

∂f̂
∂θi

=

h(a+g +b+g )−h(a−g )

a+g +b+g −a−g

∂kg
∂θi

∂ĝ
∂θi

/ ∂ĝ
∂θi

1
(α+β)ϵ

(
h(ag+bg)−h(ag)

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))
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Using Equation 2.48a and assuming H(c−) = 0, H(c+) = 1

=

h(a+g +b+g )−h(a−g )

a+g +b+g −a−g

1
(α+β)ϵ

(
bg

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))(1 + O(ϵ))

1
(α+β)ϵ

(
h(ag+bg)−h(ag)

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))

Using Equation 2.35b and Equation 2.14 on g

=
(h(ag+bg)−h(ag)

bg+O(ϵ)

bg
∂c
∂θi

| ∂c
∂x

| ) |xd

h(ag+bg)−h(ag)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

Moving O(ϵ) from denominator to numerator: similar to Equation 2.36b

ag, bg are locally Lipschitz continuous

=
(h(ag+bg)−h(ag)

bg

bg
∂c
∂θi

| ∂c
∂x

| ) |xd

h(ag+bg)−h(ag)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

Moving O(ϵ) in the bg +O(ϵ) denominator to numerator: Equation 2.36b and bg ̸= 0

=1 + O(ϵ) (2.49a)

Based on Equation 2.49a, we can conclude f is relatively first-order correct. ■

2.8.6.6 Induction Conclusions

As discussed in Section 2.4.1, the program set ea is statically continuous, therefore for any

f ∈ ea, Ci = dom(f) is always C-simple, and is therefore absolutely first-order correct.

Because f ∈ ēb is piece-wise constant, both our approximation and reference gradients are

0 for (x, θ⃗) ∈ Ci with ϵ ∈ (0, ϵf ], and is therefore absolutely first-order correct. The almost

everywhere results of Lemma 3 and Lemma 5 for the C-simple and D-simple properties

in Ci and Dr
i , respectively, combined with the induction proof on C-simple and D-simple

points likewise immediately lead to the almost everywhere results in Theorem 1 for ēc and

in Theorem 2 for ēb and ēc.
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2.8.6.7 First-order Correctness Proof for Ternary Select in Section 2.5.2.1

The ternary select operator introduced in Section 2.5.2.1 is not a primitive operator defined

in our DSL (Section 2.4), but rather an extension that improves the efficiency of the gradient

program. Nevertheless, in this section, we also use a similar induction step to show it has

equivalent first-order correctness properties.

Lemma 18 Given a function f = select(p > 0, l, r) with f, p, l, r ∈ ēc, ∀(x, θ⃗) ∈ Ci that are

C-simple and ∀ϵ ∈ (0, ϵf (x, θ⃗)], if p, l, r are absolutely first-order correct, then f is absolutely

first-order correct.

Proof: as discussed in Section 2.5.2.1, our ternary rule for the select operator f =

select(p > 0, l, r) is equivalent to differentiating the expansion f = r + (l − r) · H(p) us-

ing a biased multiplication rule instead (Equation 2.12). Because computations for all the

other operators (addition and Heaviside step function) are proven to be first-order correct

inductively in Section 2.8.6, we only need to prove that the multiplication (l − r) · H(p) is

absolutely first-order correct when differentiated using ∂T in Equation 2.12 instead. To reuse

part of the proof from Section 2.8.6.3, we will change our notations and denote g = l − r

and h = H(p).

Because f is C-simple at (x, θ⃗), it implies that g and h are C-simple and therefore

continuous at the point. We could apply local expansion and rewrite the two terms into the

following. Note because h = H(p) and it is continuous, it can only evaluate to either 0 or 1.

g =ag ag ∈ ea

h =ah ah ∈ {0, 1}
(2.50)

∂Tg · h
∂θi

=h
∂kg

∂θi
+ gn

∂kh

∂θi
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=ah
∂ĝ

∂θi
+ ag

∂ĥ

∂θi
+ O(ϵ) (2.51a)

Using Equation 2.13 and Equation 2.50 and ag is locally Lipschitz continuous

=
∂ ˆg · h
∂θi

+ O(ϵ)

Following the proof in Section 2.8.6.3 starting from Equation 2.31a

We can now conclude g · h is absolutely first-order correct, therefore inductively f is

absolutely first-order correct. ■

Lemma 19 Given a function f = select(p > 0, l, r) with f, p, l, r ∈ ēc, ∀r ∈ (0, 1],∀(x, θ⃗) ∈

Dr
i that are D-simple, if p, l, r are first-order correct for ϵ = rϵf (τ(x, θ⃗), θ⃗), then f is relatively

first-order correct for the same ϵ.

Proof: similar to Lemma 18, we only need to prove the multiplication (l − r) · H(p) is

relatively first-order correct when differentiated using ∂T in Equation 2.12. We adopt the

similar notation g = l − r and h = H(p), and apply local expansion as follows. Note ah, bh

are constants because h = H(p) is piecewise constant. Also note we use c to represent the

discontinuity in g and h to be consistent with the notations in Section 2.8.6.3. However,

if h = H(p) is discontinuous at (τ(x, θ⃗), θ⃗), this implies ∇p and ∇c are linearly dependent

because f ∈ ēc.

g =ag + bg ·H(c) ag, bg, c ∈ ea

h =ah + bh ·H(c) ah, bh are constants

(2.52)

The reference pre-filtered gradient of g ·h is already computed in Equation 2.34c. Similar

to Section 2.8.6.3, we split our relatively first-order proof into two cases: only one of g or h

is discontinuous or both are discontinuous.
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Case 1: g is discontinuous, but h is continuous at (τ(x, θ⃗), θ⃗) (the same reasoning also

goes with the inverse). This indicates bg ̸= 0 and bh = 0.

∂T g·h
∂θi

∂ ˆg·h
∂θi

=(α + β)ϵ
ah

∂kg
∂θi

+ gn
∂kh
∂θi

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

Using Equation 2.34c and bh = 0

=(α + β)ϵ
ah

∂kg
∂θi

+ gn
∂âh
∂θi

+ O(ϵ)

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

Using Equation 2.13 on h, bh = 0 and g is locally bounded

=
(α + β)ϵah

∂kg
∂θi

+ O(ϵ)

bgah
∂c
∂θ

| ∂c
∂x

| |xd
+ O(ϵ)

Using ah is constant

=1 + O(ϵ)

Following the proof in Section 2.8.6.3 starting from Equation 2.36a

Case 2: both g, h are discontinuous at (τ(x, θ⃗), θ⃗). This indicates bg ̸= 0 and bh ̸= 0.

Additionally, without loss of generality, we assume H(cn) = 0 and H(c) = 1. The inverse

can be proved under the same reasoning.

∂T g·h
∂θi

∂ ˆg·h
∂θi

=(α + β)ϵ
(ah + bh)∂kg

∂θi
+ agn

∂kh
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ)

Using Equation 2.34c and assuming H(cn) = 0, H(c) = 1

=(α + β)ϵ
(ah + bh)∂kg

∂θi
+ agn

∂kh
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

O(ϵ in the denominator can be moved to the numerator similar to Equation 2.36b
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=(α + β)ϵ
(ah + bh)∂kg

∂θi
+ (ag + O(ϵ))∂kh

∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

ag is locally Lipschitz continuous

=(α + β)ϵ
(ah + bh)∂kg

∂θi

∂ĝ
∂θi

/ ∂ĝ
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ (α + β)ϵ
(ag + O(ϵ))∂kh

∂θi

∂ĥ
∂θi

/ ∂ĥ
∂θi

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

=(α + β)ϵ
(ah + bh)(1 + O(ϵ)) 1

(α+β)ϵ
(
bg

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+(α + β)ϵ
(ag + O(ϵ))(1 + O(ϵ)) 1

(α+β)ϵ
(
bh

∂c
∂θi

| ∂c
∂x

| |xd
+ O(ϵ))

(agbh+bgah+bgbh)
∂c
∂θi

| ∂c
∂x

| |xd

+ O(ϵ)

Using Equation 2.14 and 2.35b to g, h

=
ahbg + bhbg + agbh
agbh + bgah + bgbh

|xd
+ O(ϵ)

ag, bg, ah, bh are locally Lipschitz continuous

=1 + O(ϵ)

Combining both cases we can conclude g · h is relatively first-order correct with ∂T .

Therefore inductively f is relatively first-order correct. ■

2.9 Quantitative Error Metric

Section 2.7 mathematically shows the approximation error for some subsets of programs is

O(ϵ). However, the first-order correctness result does not apply to every program, and we

cannot use it to compare two methods that are both first-order correct, such as ours and

TEG. Therefore, we also wish to numerically evaluate the gradient approximations.

One possibility is to compute the L1 or L2 distance between our gradient and the refer-

ence gradient. However, analytically writing down the reference gradient requires substantial

human effort and may not be feasible depending on the complexity of the program, which is
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exactly the motivation for developing approximate techniques to differentiate discontinuities.

Therefore, a common approach is to use the finite difference as the proxy for the reference

gradient [69]. However, a flaw with the L1 or L2 norm metrics is that the same delta distri-

bution e.g. δ(x) can be formed as the limit of many different distributions e.g. limϵ→0Gϵ(x)

and limϵ→0G2ϵ(x). Here we use Gσ(x) to identify the distribution for the Gaussian PDF wrt

x with standard deviation σ. These distributions have nonzero L1 and L2 distance between

each other even as ϵ → 0: limϵ→0(Gϵ(x)−G2ϵ(x)) ̸= 0. This behavior is undesirable because

for two different gradient approximations with different limiting “shapes” (e.g. Gϵ(x) and

G2ϵ(x)), they would wrongly be considered to have nonzero error even if they both give pre-

cisely correct derivatives as limits in the distribution theory. Additionally, finite difference

with finite step size and sample count introduces its own approximation error (Section 3.4).

We, therefore, avoid computing a reference gradient directly, and propose a quantitative

metric according to how much the gradient theorem is violated by the approximation. Ac-

cording to the gradient theorem, the line integral through a gradient field can be evaluated

as the difference between the two endpoints of the curve. For example, when the program

parameters move from θ⃗0 to θ⃗1 along a differentiable curve Θ, the correct gradient should al-

ways satisfy Equation 2.55, and any good approximation should keep the difference between

both sides of the equation as small as possible. We refer to the two sides of the equation as

LHS (left-hand side) and RHS (right-hand side).

∫
Θ

∇f(θ⃗)dθ⃗ = f(θ⃗1) − f(θ⃗0) (2.55)

Additionally, because the gradient theorem requires a continuously differentiable func-

tion, we need to pre-filter the discontinuous program f before applying Equation 2.55. In

practice, the desired pre-filter is an m+n-dimensional box filter in both the sampling axes

space and the parameter space: Ψ∗ = U [−1, 1]m × U [−ξ, ξ]n. Ψ∗ is a separable kernel that

can be decomposed into a kernel U [−1, 1]m in the sampling axes space, and a kernel U [−ξ, ξ]n

in the parameter space. For example, if f is a shader program that outputs images, the sam-
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pling axes space is the image space, and therefore m = 2. The U [−1, 1]2 kernel smooths out

a 3x3 region centered at the current pixel. In the parameter space, ξ is chosen such that the

diagonal length of the n-dimensional box kernel is 1/10 that of the line integral. We keep

the filter size relatively small to avoid extra sampling due to the curse of dimensionality.

We can replace f in Equation 2.55 with the pre-filtered smooth function to obtain our final

gradient theorem result.

∫
Θ

∇(Ψ∗ ∗ f(θ⃗))dθ⃗ = Ψ∗ ∗ f(θ⃗1) − Ψ∗ ∗ f(θ⃗0) (2.56)

We use the L1 difference between LHS and RHS in Equation 2.56 as our error metric.

L = |(Ψ∗ ∗ f(θ⃗1) − Ψ∗ ∗ f(θ⃗0)) −
∫
Θ

Ψk ∗ ∇kf(θ⃗)dθ⃗| (2.57)

The first term in Equation 2.57 corresponds to the RHS in Equation 2.56, and is estimated

by sampling the m + n-dimensional box filter Ψ∗ around θ⃗0 and θ⃗1. The second term in

Equation 2.57 corresponds to the LHS in Equation 2.56, and is estimated by quadrature

using the midpoint rule. Note we adopt a similar notation as in Section 2.4.2 and use ∇k

to denote any gradient approximation method. Also, note that we swap the convolution

and the differentiation operator and use a different pre-filtering kernel Ψk other than Ψ∗

in Equation 2.56. This is because different gradient approximations already make different

pre-filtering assumptions, such as the 1D pre-filtering approximation made by our gradient.

Therefore, a different kernel Ψk is chosen for each gradient approximation method such that

Ψ∗ = Ψk ∗ ϕk where ϕk is the pre-filtering approximation already made internally by the

method. We will discuss the choice of Φk for three gradient approximation methods: ours

(O), finite difference (FD), and TEG. We will use the shader program to compare these

methods in Chapter 3.
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Ours: as discussed in Section 2.7, our gradient is approximating that of a pre-filtered

function using a 1D box kernel U [−1, 1] along one of the m sampling axes. Recall that

Ψ∗ = U [−1, 1]m × U [−ξ, ξ]n is a separable kernel. U [−1, 1]m can be further separated into

the convolution of m 1D box kernels along different sampling axes: U [−1, 1]m = ϕ1 ∗ ... ∗ ϕm

where ϕi ∼ U({0}i−1 × [−1, 1] × {0}m−i) is the 1D box kernel along the ith sampling axis.

If we assume our gradient is pre-filtered along the ith sampling axis, we can pick ΨO =

ϕ1 ∗ ... ∗ ϕi−1 ∗ ϕi+1 ∗ ... ∗ ϕm ∗ U({0}m × [−ξ, ξ]n) to estimate ∇(Ψ∗ ∗ f) as follows.

∇(Ψ∗ ∗ f) = ∇(ϕj ∗ ΨO ∗ f) = ΨO ∗ ∇(ϕj ∗ f) ≈ ΨO ∗ ∇Of

Here ≈ indicates ∇O is an approximation that potentially introduces errors. In practice, be-

cause our approximation adaptively chooses between different sampling axes (Section 2.5.1),

for a given evaluation at (x⃗, θ⃗), ΨO∗∇Of is computed by first deciding which axis to prefilter,

then sampling along the other orthogonal axes to estimate the convolution.

FD and variants: because FD is approximated based on the original function value, we

directly use ΨFD = Ψ∗.

TEG: because TEG users define their own integrals, ΨTEG needs to be carefully chosen so

as to eliminate the pre-filtering kernels already defined in the TEG language. For example,

when differentiating discontinuous shader programs that output images, the TEG program

can be defined as an integral that pre-filters the image space with U [−1, 1]2. 5 In this case,

ΨTEG can simply be the box kernel in the parameter space: ΨTEG = U [−ξ, ξ]n.

5TEG does not handle analytic integration. After their compiler removes a single-dimensional integral
over the Dirac delta using the sifting property, the rest of the integral dimensions will be approximated by
sampling.
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2.10 Summary and Discussion

This chapter proposes a mathematical framework to differentiate program discontinuities

that are usually ignored by traditional AD frameworks. We first extend the reverse-mode

backpropagation by replacing the traditional calculus gradient rules with a set of novel gradi-

ent rules that can correctly approximate the gradient of a discontinuous program pre-filtered

with a 1D box kernel (Section 2.4). We further generalize our differentiation framework to

various programming patterns in Section 2.5, such as allowing discontinuities of interest to

be sampled from multiple dimensions, as well as improving the efficiency of the gradient for

branching operators and complicated Boolean predicates. Finally, we propose two meth-

ods to verify the accuracy of our approximation. Mathematically, we formally establish the

definition of correctness (Section 2.7), and prove that for a subset of programs, our approx-

imation error is bounded by a first-order term with respect to the size of the pre-filtering

kernel (Section 2.8). Numerically, we also design a novel quantitative error metric based on

the gradient theorem (Section 2.9) to evaluate the approximation error for any program.

Our differentiation framework still has several limitations, which invite future exploration.

Firstly, we choose the 1D box kernel as our pre-filtering to avoid evaluating the kernel

exactly at the discontinuity. However, this prevents us from rigorously connecting to the

distributional derivative because they require an infinitely smooth test function (i.e. pre-

filtering kernel in our case). Future work could better establish our approximation error

compared with distributional derivatives by extending our framework to pre-filtering with

infinitely smooth compact kernels. Alternatively, one could make a connection to the theory

of distributions by considering the distributional derivatives applied to non-smooth test

functions as being well-defined at points where all smooth, nonzero, and compactly supported

test functions that converge to the given non-smooth test function result in the same integral,

and then attempting to make the connection to the reference gradient and thus to our result

(which is already proved first order correct wrt the reference gradient) at such well-defined

points. Secondly, our gradient works under the assumption of a single discontinuity. For
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programs sampled on a regular grid, the number of samples that violate this assumption is

inversely proportional to the grid’s sampling frequency. Future work could explore adaptive

sampling along the sampling axis to further increase the likelihood of a single discontinuity.

Finally, although in our implementation the sampling axis is independent of the parameter

space, we imagine our gradient rules could further be generalized to an arbitrary choice of

sampling axis, such as a linear combination of the parameters. Section 3.3 demonstrates one

such example, where we stochasticaly sample within the parameter space.
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Chapter 3

Optimizing Discontinuous Shader

Applications

This chapter demonstrates applying the Aδ differentiation math framework (Chapter 2) to

the domain of procedural shader programs, where the image coordinate axes x and y natu-

rally become our sampling axes. Procedural shader programs use floating point operations

to flexibly describe a scene and render the visual appearance. For example, many beautiful

shader programs are shared through the community shadertoy.com, such as the ones shown

in Figure 1.1. The parameters for these shaders are carefully tuned by the programmers for

best visual appearance. However, the manual tuning process is tedious and difficult, espe-

cially if we want to tune the virtual scene to exactly match a target. One approach to address

this challenge is to automatically optimize the parameters through gradient descent, which

requires the shader programs to be differentiable. While differentiable rendering is an active

research field, most of the methods focus on differentiating specific types of discontinuities,

such as affine transformation for triangle meshes [69], or polynomial curves for vector graph-

ics [71]. The expressiveness of these specialized pipelines comes from their massive number

of parameters (i.e. triangle vertices or curve control points), but the resulting scene repre-

sentation is usually cumbersome and difficult to interpret. In contrast, a general program
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(a) Target (b) Hand-chosen (c) Configurations

(d) Optimization (e) Modified-d (f) Hybrid-b/d

Figure 3.1: Our compiler automatically differentiates discontinuous shader programs by ex-
tending reverse-mode automatic differentiation (AD) with novel differentiation rules. This
allows efficient gradient-based optimization methods to optimize program parameters to best
match a target (a), which is difficult to do by hand (b). Our pipeline takes as input a shader
program initialized with configurations (c) that look very different from the reference, and
converges to be nearly visually identical (d) within 15s. The compiler can also output the
shader program with optimized parameters to GLSL, which allows programmers to inter-
actively edit or animate the shader, such as adding texture (e). The optimized parameters
can also be combined with other shader programs (e.g. b) to leverage their visual appear-
ance while keeping the geometry close to the reference. For animation results please refer to
project page https://pixl.cs.princeton.edu/pubs/Yang_2022_AAF/index.php.
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representation allows the programmer to use their own judgment to abstract the scene, and

is usually more compact and interpretable. For example, expressing a circle programmati-

cally using its analytic equation is much easier to understand than approximating it using

multiple segments of the Bezier curve. Therefore, this chapter utilizes Aδ’s ability to differ-

entiate arbitrary programs to optimize unknown shader program parameters to match the

shader rendering with target reference images that we found on the Web. The optimization

does so more effectively and quickly than using baseline methods such as finite difference,

and even for programs outside the set we can formally prove first-order correct. At conver-

gence, we also show the program representation allows us to further modify and animate

the scene much more easily, Figure 3.1 shows two such examples. Additionally, while our

implementation optimizes parameters from a shader program, the proposed approach can

also be generalized for non-programmers. For example, non-programmers can build graph

representations using tools such as Adobe Substance Designer, and the graphs can be parsed

and differentiated as program representations as well.

This chapter describes the framework that carries out the optimization task for procedural

shader programs. We also use the shader application to investigate how to improve the effi-

ciency of the gradient program both algorithmically and by generating highly efficient GPU

code. We first extend the Aδ DSL with another shader-specific primitive RaymarchingLoop

to efficiently differentiate the raymarching loop that bypasses backpropagating every itera-

tion of the loop (Section 3.1). Next, we describe our compiler implementation that generates

the gradient program to multiple backends: TensorFlow and PyTorch for fast prototyping

and debugging, and Halide with an optional auto-scheduler for efficiency (Section 3.2.1).

After that, we address an optimization challenge when the discontinuity is rarely sampled

by introducing random variables to our optimization process (Section 3.3). And finally, we

validate our framework in Section 3.4 and compare it with baselines. Our code is available

at: https://github.com/yyuting/Adelta.

101

https://github.com/yyuting/Adelta


3.1 Implicitly Defined Geometry

In shader programs, a common way to define geometry is to encode it as an implicit surface,

or the zero set of some mathematical function, and iteratively estimate ray-geometry inter-

sections through methods like ray marching [108] or sphere tracing [53]. While ray marching

and sphere tracing loops themselves are programs, and can be differentiated using rules intro-

duced in Section 2.2, this usually results in a long gradient tape because the number of loop

iterations can be arbitrarily large. As an alternative, this section introduces a novel gradient

approximation based on the implicit function theorem that bypasses the root-finding loop

iterations.

Our rule is motivated by [152]: we extend their result for differentiating points that lie

on the zero set of the implicit geometry to differentiating discontinuities caused by object

silhouettes or interior edges. Similarly, [71] applies the implicit function theorem to dif-

ferentiate discontinuities caused by 2D line strokes. Their result, however, is limited to a

specific type of function in 2D (n-th order polynomials). [46] also develops a gradient rule

for visibility change to the implicitly defined surface. Their derivation only applies to C1

continuous geometry (Section 3.1.2) and does not handle discontinuities caused by the in-

tersection of surfaces (Section 3.1.3). Unlike previous methods, our rule can differentiate

the discontinuities generated by implicit geometries represented as arbitrary signed distance

functions.

3.1.1 The RaymarchingLoop Primitive

We extend our DSL with an additional primitive RaymarchingLoop. The programmer spec-

ifies the signed distance function (SDF) f that represents the geometry using the Raymarch-

ingLoop primitive and the compiler automatically expands a ray marching loop to approach

the zero set of the SDF. Specifically, the 3D location p⃗ is defined implicitly from the scene
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(a) C1 Continuous Geometry (§3.1.2) (b) C1 Discontinuous Geometry (§3.1.3)

Figure 3.2: Illustrating two scenarios for camera-ray intersection: (a) intersecting a locally
C1 smooth geometry and (b) intersecting a locally C1 discontinuous geometry.

parameters θ⃗ and the SDF f :

f(p⃗(x, y), θ⃗) = 0 (3.1)

The 3D locations further depend on image coordinates (x, y) that restrict the 3D location p⃗

lying on a ray casting from the camera origin o to the direction d⃗(x, y) with distance t:

p⃗ = o⃗(x, y) + t · d⃗(x, y) (3.2)

Without loss of generality, we will derive our gradient assuming x is our sampling axis and

keep y fixed. Given arbitrary θ⃗, the geometry discontinuity can be sampled if both evaluation

sites x− and x+ evaluates to different branches of the geometry. For silhouettes, this indicates

the Boolean on whether the ray has hit the geometry is evaluated differently; and for interior

edges, this corresponds to f evaluating to different branches of the CSG operation. For both

cases, the discontinuity at xd can be represented as H(x − xd). Note xd is never explicitly

computed, we simply use the pair of evaluation sites x− and x+ to sample its existence.

When differentiating the RaymarchingLoop primitive, the key is to approximate ∂xd/∂θi.

The compiler first samples xd by evaluating the Boolean predicates within f , then classifies

the cause of discontinuity based on whether the camera ray intersects a locally C1 smooth
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geometry or not, and applies the implicit function theorem to each case described in Sec-

tion 3.1.2 and 3.1.3.

3.1.2 Camera Ray Intersecting Locally C1 Continuous Geometry

In this case, the discontinuity is implicitly defined by the ray tangentially intersecting the

zero set of the SDF f , such as in Figure 3.2(a) . The SDF f is C1 continuous within a

neighborhood of the intersection, such that the derivative of f exists. The camera ray’s

direction is perpendicular to the normal direction of the geometry at the intersection.

f(p⃗, θ⃗) =0 (3.3a)

<
∂f

∂p⃗
, d⃗ >=0 (3.3b)

We can now differentiate wrt an arbitrary parameter θi on both sides of Equation 3.3a.

∂f

∂θi
+ <

∂f

∂p⃗
,
∂o⃗

∂θi
+

∂o⃗

∂xd

∂xd

∂θi
+ t

∂d⃗

∂θi
+ t

∂d⃗

∂xd

∂xd

∂θi
+ d⃗

∂t

∂θi
>= 0 (3.4)

Equation 3.4 can be simplified by inserting Equation 3.3b.

∂f

∂θi
+ <

∂f

∂p⃗
,
∂o⃗

∂θi
+ t

∂d⃗

∂θi
> + <

∂f

∂p⃗
,
∂o⃗

∂xd

+ t
∂d⃗

∂xd

>
∂xd

∂θi
= 0 (3.5)

Rearranging Equation 3.5 results in Equation 3.6.

∂xd

∂θi
= −

∂f
∂θi

+ < ∂f
∂p⃗
, ∂o⃗
∂θi

+ t ∂d⃗
∂θi

>

< ∂f
∂p⃗
, ∂o⃗
∂xd

+ t ∂d⃗
∂xd

>
(3.6)
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Because we assume f is locally C1 continuous, the derivatives on the right hand side

of Equation 3.6 are computed using traditional AD rules. The raymarching dependent

parameters, such as f , t, and p⃗ represent their corresponding evaluations from the last

raymarching iteration of the forward pass.

In our implementation, the compiler identifies every discontinuous branching g =

select(c, a, b) where c depends on the RaymarchingLoop primitive, and back-propagates g

as if the discontinuity is caused by the two samples x+ and x− lying on two sides of the

sihoulette intersection xd: g = select(x− xd, a, b), which could be easily differntiated using

∂xd/∂xi computed from Equation 3.6.

3.1.3 Camera Ray Intersecting C1 Discontinuous Geometry

Many implicit functions are only C0 continuous. For example, constructive solid geometry

(CSG) operators such as union or intersection use max or min to combine different implicit

functions, causing the resulting function to be C0 continuous. These operations can generate

silhouette or interior edges whenever two smooth surfaces intersect. For example, a box can

be viewed as the intersection of multiple implicitly defined half-spaces, such as the example

in Figure 3.2(b). The derivation in this section assumes we already know the intersection is

caused by the two C1 continuous surfaces f0 and f1. Section 3.1.4 further discusses how to

efficiently identify f0 and f1.

We start by defining the intersection as the set of points on the zero set for both f0 and

f1.

f0(p⃗, θ⃗) = 0

f1(p⃗, θ⃗) = 0

(3.7)

We now differentiate wrt θi to both equations in Equation 3.7 .
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∂f0
∂θi

+ <
∂f0
∂p⃗

,
∂o⃗

∂θi
+

∂o⃗

∂xd

∂xd

∂θi
+ t

∂d⃗

∂θi
+ t

∂d⃗

∂xd

∂xd

∂θi
+ d⃗

∂t

∂θi
>=0

∂f1
∂θi

+ <
∂f1
∂p⃗

,
∂o⃗

∂θi
+

∂o⃗

∂xd

∂xd

∂θi
+ t

∂d⃗

∂θi
+ t

∂d⃗

∂xd

∂xd

∂θi
+ d⃗

∂t

∂θi
>=0

(3.8)

Next, we can rearrange Equation 3.8 to separate ∂t
∂θi

.

∂t

∂θi
= −

∂f0
∂θi

+ < ∂f0
∂p⃗

, ∂o⃗
∂θi

+ ∂o⃗
∂xd

∂xd

∂θi
+ t ∂d⃗

∂θi
+ t ∂d⃗

∂xd

∂xd

∂θi
>

< ∂f0
∂p⃗

, d⃗ >

∂t

∂θi
= −

∂f1
∂θi

+ < ∂f1
∂p⃗

, ∂o⃗
∂θi

+ ∂o⃗
∂xd

∂xd

∂θi
+ t ∂d⃗

∂θi
+ t ∂d⃗

∂xd

∂xd

∂θi
>

< ∂f1
∂p⃗

, d⃗ >

(3.9)

Note the left-hand sides of both equations in Equation 3.9 are identical. This implies

their right-hand sides are identical as well. After rearranging the terms, we derive ∂xd

∂θi
as in

Equation 3.10.

∂xd

∂θi
=

(∂f1
∂θi

+ < ∂f1
∂p⃗

, ∂o⃗
∂θi

+ t ∂d⃗
∂θi

>) < ∂f0
∂p⃗

, d⃗ > −(∂f0
∂θi

+ < ∂f0
∂p⃗

, ∂o⃗
∂θi

+ t ∂d⃗
∂θi

>) < ∂f1
∂p⃗

, d⃗ >

< ∂f0
∂p⃗

, ∂o⃗
∂xd

+ t ∂d⃗
∂xd

>< ∂f1
∂p⃗

, d⃗ > − < ∂f1
∂p⃗

, ∂o⃗
∂xd

+ t ∂d⃗
∂xd

>< ∂f0
∂p⃗

, d⃗ >
(3.10)

3.1.4 Efficient Backpropagation

One major challenge for efficiently implementing the gradient discussed in Section 3.1.2 and

3.1.3 is to efficiently identify the cause of the discontinuity at runtime, i.e. whether the ray

is tangential to a smooth surface, or it reaches the intersection of two arbitrary sub-surfaces.

Consider the example when an implicit function f is defined by applying CSG operations to n

C1 smooth sub-functions and assume the discontinuity is caused by sub-surface intersection.

Statically writing out Equation 3.10 results in enumerating
(
n
2

)
possible combinations of f0

and f1 because we do not know which two surfaces may intersect until runtime. Therefore

the naive implementation would have O(n2) complexity.
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This section discusses a more efficient algorithm based on our observations for implicit

scene representations. Note that we make heuristic assumptions about implicit functions

that may be violated by a carefully designed counter-example. The algorithm therefore

only serves as a heuristic optimization that improves the efficiency in differentiating most

implicit scenes. Any implicit function that violates our heuristic assumption can still be back-

propagated through their iterative root-finding process using the gradient rules described in

Section 2.4.2.

Our compiler assumes that the branching decision in the implicit functions is always

represented as min or max, and all values being compared are scaled similarly (e.g. they

all represent the Euclidean distance in the scene space). This assumption holds for most

implicit scene representations, such as all the signed distance fields and the CSG operators

described in [56].

We define geometry discontinuity as any intermediate nodes g = H(h) of f where g

depends on the RaymarchingLoop primitive. The compiler identifies every geometry discon-

tinuity and back-propagates accordingly (Section 3.1.4.1). We further classify at runtime

whether the discontinuity is caused by tangential ray intersection or not (Section 3.1.4.2).

For discontinuity caused by intersecting sub-surfaces, we further dynamically modify the

branching condition in the SDF f to evaluate f0 and f1 at runtime (Section 3.1.4.3).

3.1.4.1 Sampling geometry discontinuities

We use the newly introduces primitive RaymarchingLoop to identify geometry discontinu-

ities. It is defined using the camera orientation o⃗, ray direction d⃗ and the user-defined SDF f .

Its output includes a Boolean condition B on whether the raymarching loop has diverged,

as well as the distance t from the camera to the geometry intersection. Optionally, the

SDF can define the surface normal and sub-surface labeling that shares the branching with

the original SDF. This allows the RaymarchingLoop primitive to output surface normals or

surface labeling evaluated at p⃗ = o⃗ + t · d⃗ as well.

107



In the forward pass, the compiler automatically expands the primitive into a loop that

iteratively finds the zero set to the implicit function using ray marching.

In the backward pass, we sample the silhouette discontinuity by evaluating B. The

interior edge discontinuity is sampled based on whether any branching condition defined

in f evaluates to different values for the two evaluation sites. Recall that any geometry

discontinuity sampled at xd will be represented as H(x − xd) where xd is never explicitly

computed, but its gradient can be computed implicitly. Therefore, in the backward pass, the

compiler backpropagates any geometry discontinuity H(h) as if it was in the form H(x −

xd). Further, we also apply a similar representation to the output of the RaymarchingLoop

primitive, which does not necessarily depend on explicit Heaviside step function or select

operators. For example, the distance t from the camera to geometry can be represented

as t = select (x > xd, t
−, t+) when the geometry discontinuity is sampled. However, note

this sampling method would fail to sample one type of discontinuity: when an interior edge

is caused by a tangential ray to the foreground geometry without changing any Boolean

conditions within f .

3.1.4.2 Classifying geometry discontinuities

For geometry discontinuities, the compiler applies Section 3.1.2 if the camera ray is tangent

to the geometry and Section 3.1.3 otherwise. We use a simple classification that works well

in all our experiments: a ray is tangent to the geometry if ⟨∂f/∂p⃗, d⃗⟩ ≤ 0.1.

3.1.4.3 Identifying intersecting sub-surfaces

If the compiler classifies the geometry discontinuity as being caused by sub-surface inter-

section between f0 and f1, our algorithm modifies the branching condition in f so that

evaluating Equation 3.10 scales linearly to the number of sub-surfaces.
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We start by observing that at least one of the sub-surfaces can be easily differentiated by

directly applying AD to the original function f . If we denote f0 as the sub-surface chosen

by the current branching configuration, applying AD to f is equivalent to differentiating f0.

Differentiating the other intersecting sub-surface f1 is more tricky. The compiler modifies

the branching conditions computed in f , such that the new conditions evaluates a different

branch that leads to f1. This is achieved based on another observation: a ray hitting the

intersection of f0 and f1 indicates f makes a “close decision”. This means for some branch

min(a, b) (or max), the values of a and b must be almost identical: f should still evaluate to

0 if we flip the condition and chooses the other branch and intersect with f1 instead.

To correctly modify the branching, our compiler iterates through every branching condi-

tion within f and finds the one condition c∗ = min(a, b) (or max) with minimum absolute

difference between the two sides of the comparison a and b (with O(n) complexity, n being

the number of min/max operators). If the condition c∗ evaluates to branch a instead of

branch b, we invert every condition where a is chosen to divert f to the other sub-surface f1.

3.2 Backend Implementation

Because procedural shader programs are usually evaluated over a regular pixel grid, where

the workload is embarrassingly parallel, it is important to allow the gradient program fully

utilize the GPU. Our compiler outputs a gradient program to three backends that both

support highly parallel compute on the GPU. The TensorFlow (TF) and PyTorch backends

utilize the pre-compiled libraries that allow for fast prototyping and debugging. The Halide

backend on the other hand, grants full control over the kernel scheduling, and can be orders

of magnitude faster than TF and PyTorch provided a good schedule. Section 3.2.1 discusses

details about our abstraction to the Halide scheduling space, and an optional autoscheduler.

Unlike other rendering pipelines, the procedural shader representation allows program-

mers to abstract scenes using their own judgement, not limited by the primitives provided by
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Table 3.1: Our compiler provides a simplified Halide scheduling space for a program f . For
an explanation of each choice refer to Section 3.2.1.

Name Option

logged trace List of intermediate nodes in f
cont logged trace subset of logged trace

separate cont {True, False}
separate sample {axis, kernel, None}

the system’s API. For example, although DVG [71] provides circles as a basic primitive, in

our program representation, a circle equation can be easily modified to represent a parabola,

but with the absence of a parabola primitive in DVG, users may resort to manually defin-

ing the shape through control points. To fully utilize the ease of modification for program

representations, we additionally provide a fourth backend that outputs the original program

(without gradient) encoded with the optimal parameters to GLSL. Users can then interac-

tively modify or animate the program through editors such as the one on shadertoy.com.

3.2.1 Halide Scheduling

A key challenge for generating an efficient reverse-mode gradient program is to manage the

large number of intermediate values computed in the forward pass (i.e. gradient tape). Un-

fortunately, most state-of-the-art Halide autoschedulers focus on the forward pass only, such

as efficiently scheduling the nested image pipelines and utilizing scheduling choices such as

tiling and fusion [91, 2, 120]. While Li et al. [70] proposed some scheduling options for the

gradient program of image pipelines, their work focuses on efficiently scheduling convolu-

tional scattering and gathering operations (e.g. convolution and its gradient). But in our

case, because procedural shader programs compute independently per pixel, our scheduling

bottleneck is instead the limited GPU register count per thread, which causes the trade-

off between avoiding register spilling and minimizing memory I/O in the presence of long

gradient tapes.
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On one hand, assuming unlimited register space, inlining the entire program into one

kernel without intermediate checkpointing gives the optimal performance as memory access

is minimized. On the other hand, assuming unlimited memory, writing to and reading from

memory for every intermediate computation is equivalent to building the graph using pre-

compiled libraries such as TensorFlow. Because memory bandwidth is limited, this can be

orders of magnitude slower than the first approach. However, because register space is limited

on GPUs, naively adopting the first approach usually results in register spilling, which can

cause slowdowns. In principle, register spilling can be avoided by instructing part of the

program to be recomputed within a GPU kernel. However, in practice, we do not have this

level of control even within Halide because of the common sub-expression elimination (CSE)

optimization pass by CUDA. To work around this, our scheduling choice involves splitting

the gradient program into multiple smaller kernels to best utilize available registers while

minimizing the memory I/O.

There are two strategies to our scheduling space: each value computed in the forward

pass (original program) can trade-off between recomputation (which potentially leads to

register spilling) or checkpointing (which requires extra memory I/O); and the backward

pass as a large graph can be split into multiple sub-programs. The first strategy is analogous

to the recomputation and memory consumption trade-off for back-propagation in neural

networks [27, 50]. However, generalizing those methods to arbitrary compute graphs is

hard: in sequential neural layers, checkpointing a node indicates perfect separation to the

computation before and after the checkpoint; but the equivalence in our case would be a

min-cut to an arbitrary compute graph with variable terminal nodes, which is NP-hard

[140]. It is nontrivial to adopt classic graph cuts literature (e.g. [14]) to this problem due

to the interaction with the complex engineering of the lower-level register allocator and the

hardware register space limits.

Therefore, this section describes heuristic-based scheduling options summarized in Ta-

ble 3.1. Note this is only a subset of the entire scheduling space, but it is easier to understand
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and explore, and large enough to contain reasonable scheduling for every shader program

shown later in Section 3.4. For each intermediate value in the forward pass, we decide on

checkpointing vs recomputation and encode the list of checkpoint nodes in the logged trace.

For the space of splitting the backward pass into sub-programs, we reduce it to a combi-

nation of the discrete choices in Table 3.1. Because the gradient wrt non-Dirac parameters

can be computed with traditional AD, it usually results in a smaller gradient kernel, which

can be optionally computed in a separate reverse-mode AD without any Aδ rules (sepa-

rate cont = True). Additionally, since this traditional AD sub-program is typically smaller,

it may have extra register space for recomputing values from the forward pass and save some

memory I/O from checkpointing. Therefore, instead of reading checkpointing values from the

logged trace, the gradient to non-Dirac parameters reads checkpoints from cont logged trace,

which is a strict subset of the logged trace. The gradient wrt Dirac parameters, however,

is a combination of approximating the gradient by pre-filtering four different kernels: a left

and right kernel on image coordinates x, y respectively (Section 2.5). Therefore, we can

compute the gradient approximation to each sampling axis in a different sub-program by

setting separate sample = axis, resulting two sub-programs, each computing the left and

right pre-filtering kernel for either the x or y axis. Alternatively, we can separate the ap-

proximation to each pre-filtering kernel into different parts with separate sample = kernel,

resulting four sub-programs, each responsible for computing the gradient from one of the

pre-filtering kernel.

Even after simplification, the scheduling space is still a combinatoric space that is too

large to exhaustively sample. Therefore we provide an optional autoscheduler based on

heuristic search. To estimate register usage, we build an approximate linear cost model by

counting the number of intermediate forward computation from each node to its checkpointed

children. Based on the model, we iteratively add nodes to a potential checkpoint list using

greedy search: the newly added nodes should approximately halve the current maximum cost

among all nodes. The cost model is updated according to the potential checkpointing list
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(a) Random Z parameters (b) Random Dirac parameters

Figure 3.3: Augmenting parameters with uniformly distributed random variables. This helps
to sample discontinuities more often. In (a) we show only augmenting random variables to
parameters controlling Z order, which better samples Z ordering discontinuities, and in (b)
we show our default choice of augmenting random variables to all Dirac parameters, which
also causes object boundary discontinuities to be sampled more frequently.

before every iteration of the greedy search. The list is then combined with discrete options

in Table 3.1 to search for a schedule with the best-profiled runtime. We first search the best

discrete choice with a default list of checkpointing: logged trace = cont logged trace = every

output from ray marching loops if the shader involves the RaymarchingLoop primitive, and

logged trace = cont logged trace = [] otherwise. With the best discrete combination, we

further find the optimal logged trace based on the potential checkpointing list, we search for

the integer n such that checkpointing every node found before iteration n in the greedy search

gives the best runtime. cont logged trace simply chooses from the optimal logged trace or

the default checkpointing list with the best runtime.

3.3 Random Variables for Sampling Discontinuities

As discussed before, our gradient approximation works when the discontinuity can be sam-

pled along the sampling axes. The assumption that it suffices to use only a 2D spatial grid

for sampling axes may be incorrect, when the discontinuity makes a discrete choice and the

rendered image is only exposed to one branch. For example, in Figure 2.5(d), when rings

overlap, the output color corresponds to the ring with the largest Z value. The choice is

always consistent for each overlapping region. As a result, the discontinuity generated by
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comparing the Z value between two rings may not be sampled on the current image grid

and the vanilla method is unable to optimize the Z values when the interlocking pattern is

wrong in Figure 2.5(d).

We propose to solve this problem by introducing auxiliary random variables. Conceptu-

ally, we can think of the random variables as extending the space where we sample discon-

tinuities from only the 2D spatial coordinates to a higher-dimensional space that includes

both the 2D spatial parameters and the Dirac parameters. For each Dirac parameter (with

exception of those discussed next in Section 3.3.1), its value is augmented by adding a per

pixel uniformly independently distributed random variable whose scale becomes another tun-

able parameter as well. For the ring example, adding random variables to the Z values leads

to speckling color in the overlapping region, as shown in Figure 3.3(a). Each pair of pixel

neighbors with disagreeing color represents the discontinuity on different choices to the Z

value comparison. Because the compiler does not have semantic information for each pa-

rameter, in practice we augment every Dirac parameter with an associated random variable

as in Figure 3.3(b). Instead of sampling discontinuities only at the ring contour, the random

variable allows the discontinuity to be sampled at many more pixels.

Our gradient approximation also generalizes to the random variable setting. Instead of

sampling along the image coordinate with regularly spaced samples, we now sample along

a stochastic direction in the parameter space with sample spacing scaled by both spacing ϵ

on image grid and the maximum scale s among all random variables. Therefore, the width

of the pre-filtering kernel is of the form O(ϵ) + O(s). Correspondingly, the error bound in

Theorem 1 and 2 is changed from O(ϵ) to O(ϵ) + O(s): larger scale in the random variable

increases our approximation error, but as the scale goes to 0, the error becomes similar to

that without the random noise.

One caveat is that the random variable can not be combined with the RaymarchingLoop

for implicitly defined geometry (Section 3.1) because assumptions made in its gradient deriva-

tion can be violated by random variables. We explain this further in Section 3.3.1. In the
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optimization process, a separate noise scale associated with every Dirac parameter (except

those RaymarchingLoop primitives depend on) is tuned as well. At convergence, their val-

ues are usually optimized to be so small that the random noise is not be perceived during

rasterization.

3.3.1 Caveat with the RaymarchingLoop Primitive

Our gradient rules introduced in Section 2.4.2 and 2.5.2 can easily generalize to random

variables introduced in Section 3.3 because the random generation process can be viewed as

a high-frequency black box function that we never need to differentiate through. All of our

rules about sampling the discontinuities stay valid.

However, the random variables cannot be combined with the RaymarchingLoop primitive

because key assumptions made for its gradient derivation will be violated by the introduction

of the random variables. On one hand, the specialized rule assumes that at the discontinuity

of the geometry, the ray is either tangent to the surface or it is on the zero set of two

sub-surfaces. These will approximately hold as long as the image resolution is high enough.

On the other hand, the random variables generate great variation in the scene parameters,

therefore neighboring pixels on different sides of the geometry discontinuity may correspond

to 3D points that are actually very far from the silhouette, violating the assumptions made

in Section 3.1.2 and 3.1.3. For these reasons we always disable the random variables for

Dirac parameters that the RaymarchingLoop primitive depends upon.

It is possible to combine random variables with implicitly defined geometry by resorting

to the general gradient rules introduced in Sections 2.4.2 and 2.5.2. Because the ray marching

loop can have arbitrarily many iterations, the gradient program can be inefficient due to the

long tape. Note that for simple geometries, it is also possible to analytically compute ray

object intersection and therefore avoid the loop iterations.
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3.4 Evaluation and Results

3.4.1 Optimizing to Match Illustrations in the Wild

In this section, we demonstrate that our differentiation method robustly applies to a variety

of shaders that can be used to match illustrations directly found on the Internet. These

shader programs represent similar complexity as those found on shadertoy.com, and are

usually designed using a programmer’s abstraction of the scene. As a result, animating

and modifying the program representation is easier because program components as well

as parameters have semantic meaning. In general, programs can be written with arbitrary

branching compositions. This is in contrary to specialized rendering pipelines, such as using

splines to represent 2D scenes and triangle meshes for 3D. Their expressiveness comes from

the massive number of parameters rather than the structure of the program. Therefore

specialized rules can be developed to differentiate vector graphics or path tracers, as different

parameter values still lead to similar discontinuity patterns. However, it is hard to manually

animate or control appearance using the parameters in such pipelines, because there are

hundreds or thousands of parameters and they typically do not have attached semantic

meaning.

In this section, we optimize shader parameters to match the rendering output to target

images. All target images presented in this section are directly downloaded from the Web,

with the only modifications being resizing and converting RGBA to RGB. We use a multi-

scale L2 loss. To avoid local minima, the loss objective alternates from the lowest resolution

L2 to the sum of every L2 over a pyramid up to resolution N until N reaches the rendering

resolution. This loss alternation is repeated 5 times within 2000 iterations. To further aid

convergence, we add a uniformly distributed random variable (Section 3.3) to every Dirac

parameter that is not dependent on ray marching. The scales of the random variables is also

optimized: upon convergence, their values are usually close to zero.

116

https://www.shadertoy.com/


(a) Olympic Rings (b) Celtic Knot (c) SIGGRAPH (d) TF RayMarch (e) TF RayCast

Figure 3.4: Runtime-Error plot for five optimization tasks, comparing Ours (with and with-
out random variables) with FD∗ and SPSA∗. Each plot shows the convergence of 100 random
restarts. The x axis reports wall clock time in seconds. The y axis reports log scale L2 error
relative to the minimum error Lmin found over all restarts for both methods. Labels on the
y axis are base 10 exponentials: a label k indicates an L2 error of Lmin10k. Each restart is
reported as a transparent line, and the median error within all restarts (at a given time) is
shown as the solid line. Note we select FD∗ and SPSA∗ based on the minimal error from
among 10 and 30 different variants, as discussed in Section 3.4.1. Grey horizontal lines de-
note the success threshold, while circles on grey lines mark the median success time as in
Table 3.2.

For each optimization task, we restart from 100 random initialization with 2000 itera-

tions per restart. To analyze convergence properties, we say that a restart “succeeds” if

it converges to an error lower than twice the minimum error found in all restarts by the

default method: ours with random variables. We additionally report an ablation without

the random variables. The success threshold is plotted as the grey horizontal line in Fig-

ure 3.4. Based on this definition of success, we compute two metrics: median success time

and expected time to success, and report these in Table 3.2. The median success time is

Table 3.2: Time metrics in seconds comparing how fast ours, ours without random variables
(O/wo) and baselines converge, as discussed in Section 3.4.1. Symbol × indicates the method
never succeeded in all restarts.

Shader
Med. Success Time Exp. Time to Success

Ours O/wo FD∗ SPSA∗ Ours O/wo FD∗ SPSA∗

Olympic Rings 1.4 0.9 13.8 13.8 5.0 19.1 342.4 252.7
Celtic Knot 2.3 × × × 17.3 × × ×
SIGGRAPH 2.6 1.8 34.9 71.4 6.1 6.2 86.5 247.8

TF RayMarch 0.7 0.7 × × 40.3 40.3 × ×
TF RayCast 4.3 2.2 31.4 × 13.9 9.0 2187.8 ×
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the median time taken for a restart to reach the success threshold across all restarts that

succeed. These values are plotted as colored circles on the grey line in Figure 3.4. Expected

time to success, on the other hand, evaluates given sufficient restarts, the mean time until

the optimization finally converges. It is computed by repeatedly sampling with replacement

from the 100 restarts and accumulating their runtime until a sampled restart converges.

Because of the arbitrary composition patterns present in the shader programs, none of

the shaders presented in this section can be differentiated using other state-of-the-art differ-

entiable renderers. Therefore in this section, we compare our method with finite difference

and its stochastic variant SPSA [125]. To best benefit the baselines, we run the optimization

task with ten variants for finite difference: with or without random variables combined with

different step sizes (10−i for i = 1, 2, 3, 4, 5) and denote the one with minimum error across

all restarts as FD∗. Similarly, our SPSA∗ baseline chooses from thirty SPSA variants by

least error. The 30 variants include a combination of 5 different step sizes similar to FD∗,

two choices on the number of samples per iteration (1 vs half of the number of parameters),

and three choices for the optimization process (with or without random variables as in FD∗,

or a vanilla variant that removes loss objective alternation and randomness). Note because

low-sample-count SPSA runs faster, we scale up its number of iterations accordingly so that

it runs at least as long as our method. We also experimented with AD and zeroth order

optimization (Nelder-Mead and Powell). AD hardly optimizes the parameters because most

of our shaders have little to no continuous cues for optimization. Zeroth order methods have

problems searching in high dimensions, and never succeed according to our criterion under

the same time budget. We, therefore, did not report these results.

3.4.1.1 Shader: Olympic Rings

We design a shader to express the Olympic logo 1 shown in Figure 3.5(a)-top. The shader

uses more rings than are necessary (10) to avoid being stuck in a local minimum. Each

1The Olympic rings are the exclusive property of the International Olympic Committee (IOC).
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Figure 3.5: Target, optimization, and modified results for three shaders discussed in Sec-
tion 3.4.1: Olympic Rings, Celtic Knot and TF RayMarch.
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Figure 3.6: Optimization and modifications for the shader TF RayCast, using target from
Figure 3.5(a). Section 3.4.1.5 discusses the differences between TF RayCast and TF RayMarch.
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ring is parameterized by its location, inner and outer radius, and color. Because the rings

are interlocking, each ring is slightly tilted vertically such that the Z value parametrically

depends on the pixel’s relative distance to the ring center. Unlike DVG which requires a

single Z value per shape, as is typical for illustrative workflows, our method allows the users

to define a parametric Z ordering and optimizes it automatically. Additionally, because of

the interlocking pattern, the shader can not be easily expressed using the circle primitive

in DVG, as each primitive has a user-defined constant Z order. In DVG, each connected

component of the ring can still be represented by filled shapes. But as we discussed before,

such parameterization does not have semantic meaning, increasing the difficulty for future

animation and modification.

We run the optimization task with 100 restarts and report our result with the minimum

error as Figure 3.5 Optimization, which is almost pixel-wise identical to the target. We also

report the convergence across all restarts for Ours, FD∗, and SPSA∗ in Figure 3.4(a). Each

restart is plotted using the transparent line and the median across all restarts is plotted as a

solid line. For the majority of restarts, both ours and FD∗ converge to a low error, but FD∗

requires an order of magnitude longer runtime. Additional convergence metrics are reported

in Table 3.2. For both metrics, ours is faster than the baselines by an order of magnitude.

We also optimize the same target using a simpler shader with 5 rings. The median success

time and expected time to success for our 5 rings are 0.5x and 1.6x compared to ours 10

rings, respectively. This is because the simpler shader has faster runtime, but converges less

often.

After the optimization, the compiler outputs the shader program with optimized

parameters to a GLSL backend, which allows interactive editing on platforms such as

shadertoy.com. Because the shader program renders extra primitives to avoid local min-

ima, we apply an EliminateIfUnused() program annotation outside the computation for each

ring so the compiler can automatically use a technique akin to dead code elimination to

remove unused rings from the output GLSL code. During optimization, both forward and
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backward programs emit the computations within EliminateIfUnused(). Upon convergence,

the compiler progressively removes any computation in EliminateIfUnused() if it does not

increase the optimization error. In the Olympic rings example, this refers to extra rings

that are either pushed outside of the image or to the back of the image with the same color

as the background. The pruned compute graph is then output to the GLSL backend, and

includes only code and parameters for the five rings visible in the rendering. Figure 3.5 (c)

shows an example interactive edit for the GLSL program: we decrease the spacing between

rings and thicken them. The interactive edit simply requires modifying corresponding

parameter values in the program representation. However, if the target image is represented

by multiple filled shapes, editing it to the modified position requires many tedious manual

changes such as editing the control points for each shape, and adding new shapes. Adding

new shapes may be necessary because typically editors only support a single Z value per

shape, and the decreased ring spacing introduces more disconnected regions, such as the

small black region inside the blue ring.

3.4.1.2 Shader: Celtic Knot

We modify the ring shader from Section 3.4.1.1 to match the target image for the Celtic

Knot in Figure 3.5(a). The Z ordering of the rings is parameterized similarly to correctly re-

construct the interlocking pattern, but instead of rendering colored rings, the shader renders

black at the edge of the ring with parametric stroke width, and white elsewhere.

The black and white target image [5] brings an extra challenge to the optimization task,

because the shader can no longer rely on a color hue to match the target, but instead use

gradients only from discontinuities. This limits the number of pixels that contribute to the

gradient, as discontinuities are only sampled at a sparse set of pixels. Additionally, when the

rendering and the target image are poorly aligned, the majority of the gradient contribution

is quite noisy, which causes the optimization landscape to be almost flat except for a small

neighborhood around the minimum. The problem is alleviated by the random variables
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discussed in Section 3.3. By randomly perturbing the parameter values, we generate a fuzzy

rendering that greatly increases the number of pixels with differently branched neighbors,

which permits our method to sample discontinuities more frequently.

Our optimization result is reported in Figure 3.5. It correctly locates the rings, and

correctly models the interlocking pattern. For the convergence plot in Figure 3.4 (b), ours

converges at a lower rate than (a) because of the optimization challenges discussed, but

significantly outperforms ours without random, FD∗, and SPSA∗, which do not converge at

all. This is also reflected in Table 3.2. To confirm that the scales of random variables always

converge to zero, and that the lower convergence rate is due to the flat optimization land-

scape, we run an additional optimization task for Ours where the parameters are initialized

at their optimal position with the same random variable initialization as in Figure 3.4 (b).

In all 100 restarts, the scale to the random variable always converges close to 0 such that

their effects do not influence the rasterization, and the parameters stay optimal to within 1%

of the minimum error. Because SPSA∗ is stochastic and does not always follow the gradient

direction, its poor performance on an almost flat landscape is expected. FD∗ on the other

hand, is unable to find a suitable step size: a small step can fail to sample discontinuities,

especially in the presence of the random variables, but a large step approximates the gradient

inaccurately and therefore, similarly to SPSA∗, works poorly on the almost flat landscape

with or without random variables.

Because the compiler-generated code is less readable than manually written programs,

we add an Animate() construct to the DSL to facilitate easier interactive edits and anima-

tions of the output GLSL shader. The Animate() construct indicates which input variables a

programmer who is animating or editing might wish to read and output variables that might

be modified, and inserts an empty Animate() function within the GLSL code with input

and output variables correctly referenced. That function’s body can then be easily edited

interactively essentially by performing variable substitutions or used to produce animations.

Figure 3.5 shows an example of coloring the optimized Celtic Knot shader. With our frame-
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work, we simply use the Animate() method in GLSL to access the pixel’s relative position

within each ring, and modify the color values accordingly. The interlocking is automatically

handled by the optimized Z ordering. Such an edit can be more cumbersome if directly

editing the target image in Photoshop or Illustrator, because users need to manually mask

out disconnected regions caused by the overlapping.

3.4.1.3 Shader: SIGGRAPH

In this section, we explore a 3D shader that can be used to reconstruct the SIGGRAPH

logo as in Figure 3.1(a). Our shader is adapted from the shader “SIGGRAPH logo” by

Inigo Quilez on shadertoy.com. The original shadertoy program is hand-designed with

manually picked parameters to best match the target image. However, the rendered output

(Figure 3.1(b)) is still very different from the target. We modified the original shader so that

the geometry and lighting model are closer to the target image. Each half of the geometry is

represented by the intersection between a sphere and a half-space, from which is subtracted

an ellipsoidal cone shape whose apex is at the camera location. The ray intersections are

approximated using sphere tracing with 64 iterations. Each half is further parameterized

with different ambient colors, and lit separately by a parametric directional light and another

point light.

Directly differentiating through the raymarching loop can result in a long gradient tape

because the number of loop iterations can be arbitrarily large. As an alternative, we bypass

the root-finding process and directly approximate the gradient using the implicit function

theorem. We extend the DSL with a RaymarchingLoop primitive, and develop a specialized

gradient rule motivated by [152](Section 3.1). One caveat is that the specialized gradient can

not be combined with random variables, as assumptions made for the gradient derivation

can be violated by randomness. Therefore, we do not associate random variables with any

parameters that the RaymarchingLoop primitives depend on.
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Our optimization is almost identical to the target image and is reported in Figure 3.1(c).

FD∗ can also achieve a similar low error, but because its runtime scales by the number of

parameters, it converges slower than ours by an order of magnitude, as reported in Table 3.2

and Figure 3.4(c).

Because parameters and program components have semantic meaning, this opens many

more editing possibilities than we have for the original image. For example, we can similarly

insert an Animate() primitive as in Section 3.4.1.2 and add Perlin noise [107] bump mapping

to the geometry (Figure 3.1(e)). As an alternative, we can also utilize the displacement

mapping and lighting model authored by Inigo Quilez in the original SIGGRAPH shader (Fig-

ure 3.1(b), but use optimized parameters to make its geometry similar to the target image.

To do this, we modify Inigo Quilez’s shader in GLSL so that its geometry and camera model

are compatible with our parameterization, and paste the optimized parameters to the new

shader. The hybrid modification is shown in Figure 3.1(f).

3.4.1.4 Shader: TF RayMarch

Similar to Section 3.4.1.3, we author a 3D ray-marching shader that can be used to recon-

struct the Tensorflow logo 2 shown in Figure 3.5(a). The shader uses a 64-iteration sphere

tracing loop to approximate the union of 4 boxes whose positions are constrained based

on our observations of the target image, such as they should always be connected by some

particular surfaces. The scene is then shaded by a parametric ambient color and directional

color lights. Our optimization result is shown in Figure 3.5 along with a modified novel view

rendering. The convergence is reported in Figure 3.4(d).

2TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.
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3.4.1.5 Shader: TF RayCast

This section discusses an alternative program representation that directly uses ray-box in-

tersection to attempt to match the same TensorFlow target image as in Section 3.4.1.4. All

other components stay the same as the TF RayMarch variant.

Unlike the raymarching loop, which is differentiated using special rules discussed in Sec-

tion 3.1, ray-casting shader programs are differentiated using the general gradient rules in

Section 2.4.2, so random variables can be applied to every Dirac parameter. As can be

seen in Figure 3.4(e), ours both with or without random variables frequently converges, but

for this shader, the no random variant benefits more from the faster runtime and the less

noisy gradient approximation. FD∗ does not converge as well: it struggles to find a variant

that is both accurate and able to sample discontinuities. But optimizing the TF logo is

easier, because the geometry is colored, so FD∗ still converges for a few restarts. Due to its

stochastic nature, SPSA∗ is less likely to be stuck at a local minimum, but it trades this for

lower accuracy, and so is unable to achieve low enough error. In Figure 3.6 we show our

optimization result (a), and two novel view renderings where the letters T (b) and F (c) are

recognizable.

3.4.1.6 Evaluating Gradient Approximation Quality

We also quantitatively evaluate the quality of the gradient approximation using the error

metric described in Section 2.9:

L =|(Ψ∗ ∗ f(θ⃗1) − Ψ∗ ∗ f(θ⃗0)) −
∫
Θ

Ψk ∗ ∇kf(θ⃗)dθ⃗|

=|RHS − LHS|
(3.11)

Recall this error metric evaluates how much the gradient approximation ∇k violates the

gradient theorem, where the first and second term corresponds to the right-hand side (RHS)

and the left-hand side (LHS) of the gradient theorem (Equation 2.56) respectively.
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Figure 3.7: Quantitative error metric for ours and baselines. Below each method, we report
the mean error from all pixels. For baselines, we report relative error compared to ours.
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We evaluate the metric for five of the shader programs in Section 3.4.1.1 - 3.4.1.5. Because

these shader programs output 3-channel RGB color for each pixel, we evaluate the metric

over a scalar function f that sums up the pixel values in all three color channels. For each

shader program, their optimized parameters are used as the center point θ⃗ in the parameter

space and we randomly sample a unit ray originating from θ⃗. The integral endpoints θ⃗0, θ⃗1

in Equation 2.57 are sampled by extending the random ray in both directions to a fixed

distance around the center point θ⃗. We then use the straight path from θ⃗0 to θ⃗1 as our

integral path Θ in the LHS.

We always use 105 samples to evaluate the pre-filtering with Ψ∗ for the RHS, 104 samples

for the quadrature over Θ in the LHS, and 1 sample for the pre-filtering with Ψk in the

LHS integrand. We find the noisy integrand estimate is smoothed out because the outer

integration is sampled so densely.

The metric is evaluated without random variables (Section 3.3) due to computational

reasons: random variables introduce an additional pre-filtering integral along all dimensions

of the parameter space. Due to the curse of dimensionality, accurately evaluating the LHS

and RHS in the case of random variables thus requires a very large number of samples.

Figure 3.7 visualizes the quantitative error for every pixel within the image and compares

ours with baselines finite difference (FD) and SPSA. Because FD is always slower than ours

in the optimization task (Section 3.4.1.1 - 3.4.1.5), it is evaluated at 1 sample per pixel. For

SPSA, the number of samples for the gradient approximation is chosen so that its runtime

per iteration in the optimization task is comparable to ours. To best benefit baselines, both

FD and SPSA result is chosen as the lowest error from among five different step sizes (10−i

for i ∈ {1, 2, 3, 4, 5}). In all examples, ours outperforms both baselines by a large margin.

Note for SIGGRAPHand TF RayMarch, the shaders render the 3D geometry using sphere tracing

and is differentiated using a different rule from Section 3.1 whose accuracy depends on that

of the iterative sphere tracer as well. Nevertheless, ours still has a low error by a large margin

compared to the baselines.
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Figure 3.8: Optimizations (below) matching animation keyframes (above) for two knot-tying
examples. We manually pick target key frames from the original animation, as described in
Section 3.4.2.

3.4.2 Optimizing Animation Sequence

This section explores the possibility of using a program representation to reconstruct an

animation sequence. Specifically, we experiment with knot-tying animations shown in Fig-

ure 3.8. The animations for knot-tying tutorials are generated by painstakingly manually

specifying every single frame of the animation, where each frame is expressed by a combi-

nation of filled shapes or splines without semantic relation between each other. To extract

the semantic meaning encoded in the animation, we design a rope shader whose position is

modeled by a 2D quadratic Bezier spline. Because ropes can overlap themselves, their depth

information is encoded as a quadratic Bezier spline as well. We imagine the mathematical

representation of the rope can potentially help with applications such as teaching a robot to

tie the knot.

In our implementation, we manually pick and optimize keyframes in the animation se-

quence and increment the number of Bezier segments by 1 for each keyframe. Figure 3.8

demonstrates our reconstruction of two keyframes for each of the two different knots. In-

stead of drawing additional frames in between, we can easily render a smooth animation by

interpolating control points for the rope. These animations are shown in our supplemental

video.
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We imagine the rope application can be useful in some interactive applications, there-

fore it involves several simple manual decisions. But the optimization is still carried out

automatically to find the parametric representation of the rope.

We manually pick 6 keyframes for the rope shown as Knot A Figure 3.8 and 8 keyframes

for the second rope. Because these animations are expressed as a combination of filled

shapes/strokes in HTML, we further increase the stroke width so that the dark rope edge is

more salient. This greatly helps optimizing depth when a rope overlaps with itself, because

the filled color is identical for both overlapping pieces, and the edge stroke is the only cue

for resolving the depth correctly.

To ensure semantic continuity, our framework optimizes keyframes in sequential order,

and always initializes the new optimization based on parameters from the previous keyframe.

For every keyframe, our framework first classifies whether a new rope segment should be

introduced: at the first keyframe or when a new color (representing a different rope) appears

in the current frame. If a new rope is not needed, our framework further decides whether a

new segment should be added as appending to the tail of the rope, or subdividing the existing

last segment. This is done by randomly sampling new spline segments and evaluating their

L2 loss with the target image. If the loss is always larger than without adding the new

segment, we initialize by subdividing the existing rope, otherwise, we choose 5 sampled

configurations with minimum loss as initialization. If a new rope is added, we manually

click on the two ends of the new rope and use the coordinates for initialization. This helps

both to increase the convergence rate compared to random initialization, as well as indicate

the direction of the rope, so that new segments are initialized from the correct end of the

rope for the next keyframes. At the last keyframe, an additional optimization process is

applied to search for depth-related parameters only. Because our spline representation is

not pixel-wise perfectly reconstructing the target animation frames, the overlapping regions

may not correspond exactly. This occasionally leads to the problem that the optimal depth

parameters in the L2 sense do not correspond to human intuition, as they may encourage
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Rendering Ours TEG FD 0.01

Circle 9.27 × 10−5 2.0x 3.4x

Rectangle 1.68 × 10−4 0.80x 3.6x 0.00

Figure 3.9: We compare ours, TEG [10] and finite difference (FD) using a circle and a
rectangle shader. The quantitative errors are reported below as the mean error from all
pixels, with baselines relative to ours. FD is evaluated at 1 sample per pixel and is chosen
as the lowest error from among five different step sizes (10−i for i ∈ {1, 2, 3, 4, 5}).

the intersection of ropes to lower the loss objective. Therefore, the human effort may be

involved to reject these optimization results. Finally, the optimized depth parameters will

be passed back to all previously optimized keyframes to ensure correct layering throughout

the animation.

3.4.3 Simple Shader Comparison with Related Work

This section compares our method with TEG [10] and differentiable vector graphics [71].

Because these baselines are less expressive than ours, the comparison is limited to simple

shader programs that are expressible in both their framework and ours.
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3.4.3.1 Comparison with TEG

We compare with TEG [10] using two shaders: rectangle and circle. The discontinuities in

the rectangle shader are affine, and can be automatically handled by TEG. For the circle

shader, we need to manually apply a Cartesian to polar coordinate conversion to differentiate

in TEG.

We evaluate ours, TEG, and finite difference (FD) using the quantitative error metric as

in Section 3.4.1.6 and report in Figure 3.9. Because TEG constructs the pre-filtering in the

image space as a two-dimensional integral, and because the Dirac delta only removes the

inner integral, the remaining outer integral still needs to be evaluated using the trapezoid

rule. We evaluate the remaining integral using 10 samples because otherwise, it causes

aliasing and high error. Note that such implementation allows TEG to access more samples

than ours and FD.

Because TEG can correctly differentiate both shaders, a low quantitative error is ex-

pected, and the error is solely caused by the approximation that TEG makes using its

quadrature rule for pre-filtering the 2D kernel. The error is larger in the circle shader be-

cause the integral bounds need to be remapped between the Cartesian and polar systems.

There are three possible sources of error for ours: sampling error for the 2D pre-filtering;

first order residual error in our gradient approximation (O(ϵ) term in Definition 3 and 2);

and inaccurate approximation when our single discontinuity assumption is violated (e.g. at

the four corners of the rectangle). Nevertheless, TEG’s error is 2.0x and 0.80x compared to

ours in the two examples, indicating that the approximations our method introduces cause

minimal error compared to the sampling error of the prefiltering.

We use TEG’s CPU implementation as running its gradient program on the GPU requires

manually writing extra CUDA kernels. Therefore we do not compare with TEG using the

optimization tasks similar to Section 3.4.1 because rasterization on the CPU is slow.
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(a) Circle (b) Ring

Figure 3.10: Comparing the performance of ours and differentiable vector graphics [71] for
two optimization tasks – using 100 restarts with random initialization and plot axes as
in Figure 3.4. In the circle example, DVG converges with a slower runtime. In the ring
example, DVG hardly converges because its gradient wrt the radius of the ring has a bug:
see Figure 3.12 for details.

3.4.3.2 Comparison with Differentiable Vector Graphics

We compare with Differentiable vector graphics (DVG) [71] using two shaders: circle and

ring. Both of them are expressed as a circle primitive in DVG but the ring has a specified

stroke width and blank fill color. Because DVG is integrated into PyTorch and does not

provide an API for efficiently extracting per-pixel gradient maps for arbitrary parameters,

our comparison is focused on comparing performance in a gradient-based optimization task.

The reference images for both shaders are rendered with a slightly eccentric, antialiased

ellipse such that neither shader can reproduce the target with perfect pixel accuracy. We

use L2 image loss and optimize for 100 iterations for each of the 100 randomly sampled

initializations. Because our method reuses samples from neighboring pixels to sample the

discontinuity, the actual number of samples computed is 1 per pixel. However, we find using

1 sample per pixel for DVG generates inaccurate gradients even for continuous parameters

such as color. Therefore, we use 2 × 2 samples instead.

For the circle shader (Figure 3.10(a)), both ours and DVG easily converge to images

that are similar to the reference image (Figure 3.11), but DVG is much slower. For the ring
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Target Ours DVG

Circle

Ring

Figure 3.11: Comparison of the optimized result for ours and DVG. Because each task
restarts with 100 random initializations, here we show for each task, the result whose error
corresponds to the median of 100 restarts. The target images are rendered with slightly
elliptical shapes to avoid either ours or DVG forming a perfect reconstruction. For the circle
shader, both Ours and DVG converge close enough to the target image. But for the ring
shader, DVG is unable to converge because of a bug discussed in Figure 3.12.

(a) Rendering (b) Ours (c) DVG (d) FD

Figure 3.12: For a single channel rendering of the ring shader (a), we evaluate the gradient of
pixel color wrt the radius parameter and generate per pixel gradient maps for ours (b), DVG
(c) and finite difference (FD) (d). Red indicates the gradient is positive and blue indicates
negative. Our gradient agrees with FD, while DVG’s gradient for the inner circle has the
opposite direction as ours and FD.
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shader, however, DVG fails to converge for most of the restarts (Figure 3.10(b)). We suspect

the non-convergence is caused by a bug in their code that generates incorrect gradients (

Figure 3.12). However, even after disregarding the bug, DVG is slower than our method and

can not handle parametric Z ordering as in Figure 3.5.

3.5 Summary and Discussion

In summary, this chapter applies the Aδ differentiation framework introduced in Chapter 2

to the application of interactive editing and animating illustrations represented as shader

programs. Our method has several limitations, which offer potential avenues for future

work.

First, our current implementation requires a programmer who is sufficiently skilled in

writing shaders so the given shader for some parameter setting can approximate the target

image. We imagined that future work might broaden the scope of applicability to non-

programmers by setting up a 2.5D or 3D workspace where primitives can be placed down

and properties can be assigned to them such as interior and edge color, visibility, front-

parallel or planar depth in 2.5D, or geometric properties and relationships in 3D such as

radius, abutment, symmetry, or CSG operations. Then the user could optimize user-chosen

subsets of these properties to produce different designs.

Additionally, our current heuristic-based Halide auto-scheduler may not generalize to

more complicated shader programs. For example, an iterative loop without specialized gra-

dient approximation can generate a very long tape, which can cause trouble for efficient

scheduling. Future research can either establish better cost models and checkpointing strate-

gies for better auto-scheduling, or develop GPU kernels that can smartly trade-off between

register usage and recomputation.

Finally, our specialized gradient approximation for implicit geometry cannot be com-

bined with random variables. This can result in undesirable local minima for optimization
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applications, such as when one object is entirely occluded by another. We believe a different

specialized rule may be designed based on volumetric rendering [82], so that both foreground

and background objects are involved in the differentiation.
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Chapter 4

Optimizing Discontinuous Audio

Synth Applications

This chapter adapts and extends the Aδ differentiation framework (Chapter 2) to audio syn-

thesizers. Synthesizers are electronic musical instruments that generate waveforms through

compositions of modules such as frequency modulation, filters, noise, and envelope. They are

powerful and expressive, but come at the cost of difficulty in control. A typical synthesizer

includes hundreds of parameters, and manually tuning every one of them is both tedious

and time-consuming even for experts. Automatic synthesizer programming addresses this

challenge to automatically search for a set of patch connections and parameter settings to

generate audio that best matches a given target sound. Such parameter optimization tasks

benefit from access to accurate gradients. However, typical audio synthesizers incorporate

components with discontinuities – such as sawtooth or square waveforms, or a categorical

search over discrete parameters like a choice among such waveforms – that thwart conven-

tional automatic differentiation (AD). Some of the discontinuities, such as the discontinuous

waveforms can be easily differentiated through our Aδ framework, while others, such as the

categorical discrete parameters, require specialized gradient rules inspired by the random

variables introduced in Section 3.3. Therefore, this chapter utilizes and extends the Aδ
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differentiation rules to directly differentiate the synthesizer as a white box program, and

thereby optimize its parameters using gradient descent. We evaluate our framework using a

generic FM synthesizer with ADSR, noise, and IIR filters, adapting its parameters to match

a variety of target audio clips. Our method outperforms baselines in both quantitative and

qualitative evaluations.

4.1 Overview

Synthesizers provide musicians and sound designers with creative flexibility, diverse audio

characteristics, and convenient production capabilities. However, the versatility of synthe-

sizers also poses challenges in terms of control, because manually searching over numerous

parameters to seek a particular type of sound requires expertise, time, and effort. Automatic

synthesizer programming addresses these challenges by automating this search process to find

a set of parameters that best match a given target sound. Formally, given a synthesizer f

with parameters θ⃗ and a target sound T , the search problem seeks the optimal parameters

θ⃗∗ that minimize some loss function L between the synthesizer output and the target.

θ⃗∗ = argminθ⃗ L(f(θ⃗), T ) (4.1)

In principle, a straightforward solution to Equation 4.1 would differentiate L with respect to

the parameters θ⃗, and then minimize L by gradient descent. However, in practice, typical

synthesizers f contain discontinuous oscillators, like square or sawtooth waveforms, and

discrete categorical parameters, such as choosing different waveforms and modules, that

thwart traditional automatic differentiation (AD) approaches.

Audio researchers have developed several workarounds that avoid directly differentiating

f . For example, zeroth order optimizations such as genetic algorithms [153, 127] approxi-

mately solve Equation 4.1 at the expense of greater computation and potential artifacts from

failures near local minima. Alternatively, Equation 4.1 may be approximated by deep learn-
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ing approaches. For example, the synthesizer f can be approximated via a differentiable

neural proxy [80, 20], or the entire argmin mapping can be approximated by a parame-

ter prediction network [67, 11]. However, the flexibility of deep learning approaches for

synthesizers is constrained, as data collection and training are typically limited to specific

synthesizers with fixed parameter choices, making it impractical to directly apply trained

models to arbitrary synthesizers.

As discussed in Chapter 2 and 3, a variety of methods in computer graphics have been

developed recently to approximate the gradient for image generation processes that contain

discontinuities, including our own Aδ framework introduced in Chapter 2. Therefore we

build on the Aδ gradient rules to differentiate audio synthesizers as well.

This chapter presents an optimization framework to directly differentiate the pre-filtered

synthesizer output, and solve Equation 4.1 via gradient descent. We adapt and extend the

math in Aδ to differentiate discontinuous and discrete synthesizer components. We also

introduce heuristic methods for better convergence. The approach finds synthesizer param-

eters that better match the target than baseline methods by qualitative and quantitative

measures. Moreover, our framework allows musicians to incorporate domain expertise to

flexibly modify and fine-tune synthesizer components.

4.2 Related Work

Researchers have explored a variety of techniques to automatically search for optimal syn-

thesizer parameters without having to explicitly differentiate the synthesizer. Genetic algo-

rithm approaches [153, 127] mutate and crossover variants to search over the entire program

space for arbitrary synthesizers, but are at the cost of excessive compute and have difficulty

accurately converging to local minimums without the guidance of the gradient. On the

other hand, deep learning models can be used to directly predict the synthesizer parameters

[118, 11, 67]. However, they heavily rely on the annotated datasets of synthesizer presets,
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therefore cannot be flexibly generalized to any synthesizer. Similarly, each trained model

can only be used for one particular synthesizer patching, greatly limiting the flexibility of

the method. Unlike learning-based methods, we do not need any dataset, and can flexibly

differentiate any white-box programs for easy finetuning and parameter transfer between

synthesizer patchings. Additionally, our gradient descent framework allows us to converge

better than GA.

Alternatively, synthesizers can be defined by differentiable functions, therefore allowing

optimal parameters learned through gradient descent. For example, neural audio synthesis

methods use black-box neural networks to generate audio samples [99, 38]. The neural

proxies can be combined with continuous synthesizer components as well, such as DDSP

methods that incorporate digital signal processing modules [37, 20], and DWTS methods with

learnable wavetables [117]. However, because these methods use continuous proxies, they

usually do not match the exact parameterization of complicated discontinuous synthesizers,

therefore cannot be flexibly used to control conventional synthesizers. Additionally, the

neural modules introduce nontrivial inference overhead and are less efficient than traditional

synthesizers. Unlike the differentiable neural proxies, our method directly differentiates

the white box program that emulates a traditional synthesizer. Therefore, it optimizes

semantically meaningful synthesizer parameters.

4.3 Method

This section demonstrates our gradient-based optimization pipeline. We first describe in

Section 4.3.1 our approach to differentiating the synthesizer. Next, we present our loss

function choices in Section 4.3.2 and finally discuss how to explore the multi-modality and

avoid local minimums in Section 4.3.3.
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4.3.1 Approximating the Gradient

This section focuses on the customized gradient introduced to our framework. This includes

differentiating the discontinuities (Section 4.3.1.1 - 4.3.1.2), workaround to avoid zero gradi-

ents (Section 4.3.1.3), and efficiently differentiating IIR filters (Section 4.3.1.4). The rest of

the program can be easily differentiated using traditional AD.

4.3.1.1 Differentiating Discontinuous Waveforms

We view both the square and sawtooth wave as periodic compositions of the Heaviside step

functions, which evaluate to 1 on the one side, and 0 on the other side. The discontinuity can

be differentiated by applying the gradient rules proposed by Aδ [149], which approximates

the gradient as if the discontinuous signal is convolved with a 1D box filter along the time

dimension. Note the Aδ approach is more accurate than differentiating a naively smoothed

discontinuity with arbitrary linear or sigmoid transitions, especially when discontinuities are

composited. For example, the composition of discontinuous modulation and carrier signals

in an FM synthesizer.

4.3.1.2 Differentiating Discrete Categorical Choices

The Aδ gradient rules help differentiate discontinuities that can be easily sampled along

the time dimension, such as the discontinuous waveforms in Section 4.3.1.1. However, the

challenge remains for the discrete categorical choices, because they rarely interact with the

continuously sampled time dimension, therefore the discontinuity cannot be easily sampled.

This section proposes a stochastic approach to differentiate the discrete parameters.

Specifically, we define a categorical node g as taking input from a discrete parameter x
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with potential choices A,B, ..., and outputs to a floating point value:

g(x; θ⃗) =


gA(θ⃗) if x == A

gB(θ⃗) if x == B,

...

(4.2)

gA, gB are floating point functions associated with choices A,B respectively. For example,

this could be the waveform equations such as sine and square.

Our stochastic approach views the discrete parameter x as a discrete random variable

X with different samples X at different time steps. Therefore g(X ; θ⃗) becomes a random

variable as well. Throughout this section, we will use lowercase letters (e.g. x) for the

synthesizer parameters that need to be optimized, calligraphic uppercase letters (e.g. X ) for

its corresponding random variables, and regular uppercase letters (e.g. X) for sampled values

from the random variable. Note when X has close to zero variance, it will consistently sample

the same choice for every time step, therefore X can be viewed as a constant identical to

x. We further model g(X ; θ⃗) similarly to an argmax operator, where each potential choice

A,B, ... is associated with a “score” random variable, and the output of g corresponds

to the choice with the highest “score”. Specifically, the “score” for choice A is modeled

as YA = µA + σA · U , where µA, σA are the mean and standard deviation, and U is a

uniform random variable with zero mean and unit variance. For any two neighboring samples

with disagreeing categorical choices A and B, we view the inconsistency as a discontinuous

branching conditioned on whether the sampled “score” Y for choice A is greater than B or

not: g = select(YA > YB, gA, gB). By forming the discontinuity this way, the gradient wrt

µA, σA, µB, σB can be easily computed with the Aδ gradient rules on the time domain. At

convergence, the variance to every “score” variable should be reduced to a small value such

that the categorical choice is sampled consistently.
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Our stochastic gradient rule works best when there is a high correlation between the

functions associated with each choice gA, gB, etc. Intuitively, this allows gA, gB, ... to form a

convex hull for the sampled output g(X; θ⃗), therefore reducing the variance of the gradient

estimation. Therefore when differentiating categorical waveform choices, we align the phase

of the wave functions such that their correlation is maximized.

4.3.1.3 Avoiding Dead Gradient Caused by Clamping

Many synthesizer parameters have constraints on their values, such as the period for ADSR

stages should be nonnegative, and the filters’ cutoff frequencies should be within a valid range

to avoid singularities. A typical strategy for optimizing these constrained parameters in an

unconstrained problem is to clamp the parameters: taking the min and max against their

upper and lower bounds. However, clamping introduces another challenge for optimization:

once the parameter is out of bounds and clamped, the gradient wrt the parameter becomes

zero. For example, ∂max(θ,0)
∂θ

= 0 whenever θ < 0. An analogy is the ”dead neuron” for ReLU

activations in neural networks.

We propose a heuristic workaround that avoids constrained parameters getting stuck at

out-of-bound values. Specifically, we design the following customized gradient for the min or

max operator f that compares with a constant C, and assume the gradient wrt f is already

computed as dL/df .

f =min(θ, C)

∂L

∂θ
=select(θ < C,

dL

df
,max(

dL

df
, 0)) (4.3a)

The gradient for the max operator is similar to Equation 4.3a, but < and max are replaced

by > and min respectively. Note this is only a heuristic workaround for reverse-mode AD,

and can not be used for forward-mode AD because it requires computing dL/df before

differentiating f . Intuitively, the customized gradient in Equation 4.3a will push the out-of-
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bound parameter θ back to its valid range whenever the gradient wrt f wishes to bring the

clamped value back to valid.

4.3.1.4 Efficient IIR Filter Back-propagation

Infinite impulse response (IIR) filters are widely used in synthesizers to flexibly control the

timbre. However, differentiating the IIR filter introduces performance challenges because

each output value at a certain time step recurrently depends on every input/output value

in previous steps, and naively unrolling the gradient in the time domain is computationally

expensive. We, therefore, avoid the complex dependency in the time domain by applying the

filter in the frequency domain similar to [80]. During optimization, we only differentiate the

spectrogram of the synthesized audio multiplied by the spectrogram of the unfiltered audio

with the frequency response of the filters. Because most popular filters (e.g. Biquad, Butter-

worth) used in synthesizers already have closed-form solutions for their frequency responses,

requiring frequency domain proxy does not affect the expressiveness of our approach.

4.3.2 Loss Function

This section discusses the optimization loss function L. Unlike supervised deep-learning

methods that could rely on loss in the parameter space at the cost of collecting the preset

dataset, our optimization pipeline can only rely on spectral and time domain losses. However,

finding the ideal loss that is consistent with human perception is challenging for several

reasons. Firstly, standard losses such as spectrogram (log mel) L2 only work best when

the distances between two signals are within the just noticeable difference (JND), but this

is rarely the case during our optimization, as we always start with random initial guesses,

and the synthesizer may never reach JND to an out-of-domain target signal. Furthermore,

although deep perceptual metrics have been developed for speech signals, generalizing them

to synthesizers introduces extra noise as well.
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We propose a heuristic combination of several different losses to approximate the per-

ceptual similarity. The intuition is that the gradient to the majority of the losses should

agree with human perception even if a few of them are noisy. Besides the standard losses,

we additionally include the 1D Wasserstein distance along the frequency dimension because

of its wide applicability in matching distributions. Our final optimization loss is a weighted

combination of the Wasserstein distance, L2, log mel L2, and a deep feature distance from

the wav2clip model [143]. The weights are chosen such that each component has a rela-

tively equal contribution. For the losses that work on a spectrogram (L2, log mel L2, and

Wasserstein), we use three different window sizes (512, 1024, 2048) with 75% overlap be-

tween windows. The deep feature loss also uses the same window and hop sizes, but for

efficiency, we stochastically evaluate the model using one of the window sizes per iteration.

Additionally, because the deep feature model takes time domain signal as input, we need to

apply inverse STFT to the spectrogram because of the frequency domain IIR approximation

described in Section 4.3.1.4.

4.3.3 Identifying Perceptually Similar Results

Gradient-based optimizations may converge to a variety of local minimums with very different

perceptual similarities to the target sound. Our framework runs multiple random restarts

to avoid getting stuck at local minimums. However, we do not yet have a quantitative

metric that reliably characterizes the perceptual similarity for synthesizers. While we use

our weighted loss in Section 4.3.2 to provide a gradient for the optimization, its absolute

value does not precisely correspond to perceptual similarity either: perceptually dissimilar

results may still have lower error than similar results, and manual selection is still needed

to filter out the bad results. Therefore, we further propose an automated process that uses

early termination to avoid wasting compute at local minimums, and also a mechanism to

identify good quality results after convergence.
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Our early termination strategy is a generalization to the intuition that good initial start-

ing points have ahigher probability of converging into good results. We generalize the heuris-

tic to arbitrary iteration within the optimization process and terminate the optimizations

with bad results at the end of a sequence of predetermined iterations. Additionally, be-

cause the weighted loss in Section 4.3.2 cannot reliably characterize perceptual similarity,

we rely on the Pareto ranking on multiple losses to identify bad results. Specifically, we

terminate optimizations whose Pareto rank on every non-deep-learning loss in Section 4.3.2

is higher than ceil(max rank), where max rank is the maximum Pareto rank for the current

population. In our implementation, the early termination is checked for every 100 iterations

starting at iteration 200, and we run every optimization until full convergence and simulate

the early termination.

Besides early termination, we also note that when the optimization result is already close

to the target at convergence, its loss metrics calculated from a larger window size would

better resemble perceptual similarity. Specifically, bad results usually have a much large L2

error. We therefore further filter out the converged result whose L2 loss on the spectrogram

with window size 2048 is 2x higher than the lowest among all results, and finally rank the

remaining results based on the weighted sum of Wasserstein, L2, and log mel L2 on the same

spectrogram.

4.4 Validation

This section validates our proposed framework by optimizing the parameters of an FM

synthesizer to match various audio signals for musical instruments and special sound effects.

All the targets are downloaded from the web and are therefore out of domain. We first

describe our FM synthesizer in Section 4.4.1 and evaluation setup in Section 4.4.2, then

compare our method with two baselines through a user study (Section 4.4.3). We also

show the optimization convergence in Section 4.4.4. Finally, Section 4.4.5 demonstrates the
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Figure 4.1: Summary for the synthesizer model used in our experiments. Dashed boxes and
arrows corresponds to optional components whose connection is decided per target.

flexibility of our framework with a case study that finetunes the optimization result to a

modified synthesizer.

4.4.1 Synthesizer Model

We implement an FM synthesizer in PyTorch to leverage its automatic differentiation (AD)

framework. The gradient discussed in Section 4.3.3 is implemented as the cutomized back-

ward pass, and regular AD is used for the rest of the computation (e.g. ADSR, STFT).

Our FM synthesizer structure is summarized in Figure 4.1. It has one carrier signal

modulated by the weighted sum of four different signals. Each signal, including the carrier

and modulation, is parameterized with a categorical choice from the four base waveforms:

sin, square, triangle, and sawtooth. Each modulation signal is further parameterized by ratio

and index, which controls the frequency and the magnitude of the modulation respectively.

The FM signal will further be filtered by three Biquad equalizers (low shelf, high shelf, and

peak) and a pair of Butterworth low and high pass filters. After that, the filtered signal

will be multiplied by an ADSR model with an optional choice for exponential release and

amplitude modulated (AM) attack, decay, and sustain. Finally, filtered white noise can

be optionally added either by sharing the original ADSR or with a different set of tunable

ADSR parameters. Note the optional configurations are manually decided for each target

signal based on their different audio characteristics. The overall model includes 40 - 70

parameters.
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Figure 4.2: Listening test distribution aggregated for every worker and every target audio.
For each worker and each target, we compare the average ratings between ours and two
baselines (AD and NSGA-II). We denote our rating that is smaller than, equal to, or greater
than that of the baseline as “prefer baseline”, “no preference”, and “prefer ours” respectively.

4.4.2 Evaluation Setup

We compare with two baselines: gradient-based optimization but with traditional AD, and

zeroth order optimization with genetic algorithm NSGA-II. The AD baseline uses the same

optimization framework described in Section 4.3, except that the gradient described in Sec-

tions 4.3.1.1 - 4.3.1.3 is replaced by traditional AD. The zeroth order baseline does not

require any gradient, and instead uses the genetic algorithm NSGA-II [33] to search over

the parameter space. Note because NSGA-II is a multi-objective algorithm, it directly finds

Pareto optimal solutions to the various loss functions in Section 4.3.2 without having to

compute their weighted sum as in gradient-based optimization.

We use 16 different target sounds, including 12 musical instruments and 4 special sound

effects listed in Figure 4.3.

For ours and AD, we run the experiment with 100 random restarts for a maximum of 2000

iterations per restart. Note that because of the early termination described in Section 4.3.3,

the actual number of iterations per restart varies. We additionally supply the NSGA-II with

a reasonable sample range to the parameters, and run the algorithm with 100 population

size and 2000 generations.

4.4.3 Listening Test

Because no perceptual loss exists for comparing synthesizers and musical instruments, we

rely on the user study to qualitatively compare results for ours and baselines. For each
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Figure 4.3: Listening test rating for each of the 16 target audios grouped into six categories.
Error bars correspond to 2SEM (standard error of mean). To save space we shorten the
following names: Marim(ba), Xylo(phone), and Count(down).

method and target sound, we pick the top 4 results based on the ranking from the last

paragraph of Section 4.3.3, generating a total of 12 samples per target for all three methods:

ours, AD, and NSGA-II. We then ask workers on Mechanical Turk to rate how similar each

result is to the target audio. Each worker is asked to rate all 12 samples for two different

targets. We further embed four validation samples to filter out careless ratings: two that are

intentionally corrupted from the two targets to be worse than any of the 12 corresponding

optimization results, and two other samples that are identical to targets randomly chosen

from all 16 targets. Therefore each worker rates 2 × 12 + 4 = 28 samples. The user study is

repeated so that each instrument is rated by 30 different workers.

Figure 4.2 demonstrates the distribution of the user study aggregated across every worker

and every target. Our method outperforms both baselines by a larger margin, but AD

is preferred more than NSGA-II. We further compute the p-value for the following null

hypothesis: our average rating per user per instrument is smaller than or equal to that of

the baseline. The p-value for the AD baseline is 2e-8, and for the NSGA-II baseline is 3e-61.

We additionally report in Figure 4.3 the rating for each of the target audio. Ours per-

forms best when the FM synthesizer is a good emulation of the underlying instrument that

generates the target, such as for woodwind or brass categories. AD has similar ratings to

ours more frequently than NSGA-II, which is consistent with Figure 4.2 where AD is pre-

ferred over NSGA-II. Note in all cases when baselines have similar or higher ratings than

ours, the rating difference is always within the error bar, indicating the rating preference is

not statistically significant. We could further characterize the cases where ours and baselines
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Figure 4.4: Comparing the convergence of ours and baselines for the 100 random restarts
of all 16 optimization tasks. The x-axis reports simulated time: the number of function
evaluations scaled with the actual runtime for each method. The y-axis reports the weighted
loss used for the gradient-based methods (ours and AD). For gradient-based methods, each
transparent line corresponds to a restart. For NSGA-II, each transparent line plots the loss
value for the kth population at each generation, where k is between 1 and 100. The median
within all restarts (all populations for NSGA-II) at a given time is shown as the solid line.

have similar ratings into two scenarios. The first one is when the target is less challenging,

and can be easily reconstructed by various local minimums, such as Pop1 and Pop2. There-

fore, AD is likely to converge as long as one of the local minimums is close enough to any of

the 100 random restarts. Similarly, it is also easier for NSGA-II to find the local minimum

through mutation. The second scenario is when the FM synthesizer cannot nicely emulate

the instrument, such as for Piano. Therefore none of the methods can converge close enough

to the target, resulting in similarly low ratings.
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4.4.4 Optimization Convergence

This section discusses the optimization convergence for ours and baselines. This would

demonstrate how frequently each method would converge in the optimization. Figure 4.4

demonstrates the convergence for all 16 optimization tasks. In all of the plots, the 100 pop-

ulations for NSGA-II converge similarly because bad results are removed at the end of each

generation. Unlike genetic algorithms, the 100 optimizations for both ours and AD have

diverging performances because gradient-descent only explores the local parameter space

and may be stuck at a local minimum. The early termination described in Section 4.3.3

conservatively removes some of the local minimums, but more importantly reduces the num-

ber of evaluations toward the end of the optimization because fewer restarts are still active.

Typically, the convergence plot is consistent with the listening test result in Figure 4.3, with

the exception of Oboe, where NSGA-II converges to the lowest error, but its listening test

performs worse than ours. But this is simply due to the choice of weights that combine

multiple losses into one scalar: NSGA-II converges to lower Wasserstein error and higher L2

and log mel L2 loss, therefore it is not Pareto superior to ours and AD.

4.4.5 Finetune Case Study

This section uses the Xylophone target as a case study to demonstrate that our white box

method can be easily combined with user expertise to modify the synthesizer components

and finetune the parameters flexibly.

Similar to all other target audios, the Xylophone target is initially approximated by the

synthesizer model described in Section 4.4.1. It uses filtered white noise with independent

ADSR to model the strike at the beginning of the sound. However, the optimization result

for this synthesizer model is not ideal, specifically, the beginning of the audio sounds very

different from the target. This can be verified by Figure 4.5, which compares the spectro-

gram for the first 0.07s of the sound between the target (a) and the optimization(b): the

optimization has a longer attack stage than the target.
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Figure 4.5: Visualizing the spectrogram for the Xylophone target (a), original optimization
result (b) using filtered white noise described in Section 4.4.1, and finetune result (c) using an
impulse component described in Section 4.4.5. The spectrogram is computed with window
size 512 and hop size 128.

We ask a synthesizer expert to identify the potential cause of the inconsistency: instead

of using filtered white noise, the beginning of the audio may be better approximated by an

impulse with IIR filters. We, therefore, use the following impulse component to replace the

filtered white noise component in our synthesizer. We first manually calibrate the starting

time of the Xylophone sound within the target audio clip, and set the impulse at that

location. Similar to the white noise, the impulse is also filtered by three Biquad equalizers

(low shelf, high shelf, and peak) and a pair of low and high-pass Biquad filters. Note

because the impulse signal is not static, we have to optimize the IIR parameters in the

time domain rather than the frequency domain as in Section 4.3.1.4. Therefore we avoid

using any Butterworth filters mentioned in Section 4.4.1 for a faster backward pass. Because

the original optimization nicely approximates the target except at the beginning, we only

compute the loss for the first 2048 samples, and keep all the FM-related parameters fixed to

only optimize the newly added IIR parameters for the impulse, the scale of the impulse, and

the original ADSR parameters that are initialized with their previously optimized values. To

better characterize the filtered impulse signal, we also use smaller spectrogram window sizes:

128, 256, and 512 with 75% overlap. Figure 4.5(c) shows the spectrogram of the finetune
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result that indeed better matches the attack stage of the target. Perceptually it also sounds

similar to the target, please refer to our project page for audio results.

Note the finetune process described in this section cannot be easily adopted by deep

learning methods, because they would require re-collecting a new dataset and re-training

the model for any change in the synthesizer models. Unlike them, because we directly

optimize the white-box programs, we can flexibly change the synthesizer components and

reuse any parameters from previous optimizations that are still relevant.

4.5 Summary and Discussion

The framework described in this chapter only searches for synthesizer parameters, and leaves

patch connections fixed. Nevertheless, the gradient rules described in Section 4.3.1 provide

a potential solution. It could be easily extended to optimize binary connection decisions,

therefore the general patch connection could be optimized if viewed as compositions of binary

choices.

Additionally, because no perceptual loss for musical instruments and synthesizers exists,

our framework has to rely on a combination of various loss terms (Section 4.3.2) together

with a Pareto rank based early termination strategy to improve convergence. Future work

on perceptual similarity could greatly simplify our pipeline.

In conclusion, this chapter proposes to find synthesizer parameter settings that best

match a given target sound by directly differentiating the white-box synthesizer program.

We adapt and extend recent methods from differentiating rendering to differentiate the dis-

continuous and discrete components of the synthesizer, and design an optimization pipeline

to solve the problem through gradient descent. We validate our method through user stud-

ies on Mechanical Turk, where our result is preferred over baselines by a large margin. We

further demonstrate the benefit of differentiating white-box programs through a case study,

where we can flexibly modify and finetune synthesizer components.
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Chapter 5

Approximate Program Smoothing

Chapter 2 introduces a math framework Aδ that extends traditional reverse-mode AD and

differentiates arbitrary discontinuous programs. The approximate gradient relies on the

idea of pre-filtering: the approximation is equivalent to first convolving the discontinuous

program with a smoothing kernel before the differentiation. The integral introduced by

the convolution, therefore, avoids the “naked” Dirac delta caused by differentiating the

discontinuity, allowing them to be evaluated within the integral. While the Aδ gradient

can be conceptually viewed as differentiating a continuously smoothed program (i.e. pre-

filtered discontinuous program) using traditional calculus, automatically carrying out the

symbolic convolution is challenging. Therefore, Aδ avoids explicitly applying the convolution,

and directly develops math rules that approximate pre-filtering and differentiation at the

same time instead. Nevertheless, symbolically smoothing a program by convolving with

a smoothing kernel allows many interesting applications such as antialiasing in rendering.

Therefore, this chapter takes one step into automating the process of program smoothing by

approximating the program’s convolution with a Gaussian kernel. The framework is then

validated under the application of antialiasing procedural shader programs.
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(a) Reference (b) No Antialias (c) Our Result (d) Dorn et al. (e) Supersample

L2 Error: 0% L2 Error: 100% L2 Error: 18% L2 Error: 81% L2 Error: 62%

Run-time: 1000x Run-time: 1x Run-time: 2x Run-time 1x Run-time 2x

Figure 5.1: We design a novel compiler framework for smoothing programs. Here we show
how our smoothing framework can be applied to bandlimiting (antialiasing) procedural
shader programs. (a) is the ground truth result for a brick shader, estimated by using
1000 samples; (b) is the aliased result due to naively evaluating the original shader program;
(c) is our result; (d) is the result of previous work [35] and (e) is supersampling, chosen to
use comparable run-time as our result. The L2 errors are reported in sRGB color space, with
the inset heatmap depicting per-pixel L2 error. For each method, We report the runtime
and L2 error relative to the naive aliased result (b). Our result has significantly less error,
noise, and aliasing than other approaches.

5.1 Overview

In many contexts, functions that have aliasing or noise could be viewed as undesirable.

This chapter develops general compiler-driven machinery to approximately smooth arbitrary

programs, and thereby suppress aliasing or noise. We then apply this machinery to bandlimit

procedural shader programs. To motivate our approach concretely by an application, we

first discuss how procedural shaders may be bandlimited, and then return to our smoothing

compiler.

Procedural shaders are important in rendering systems, because they can be used to

flexibly specify material appearance in virtual scenes [4]. In this work, we focus on purely

procedural shaders that do not contain texture lookups or other references to buffers. One

visual error that can appear in procedural shaders is aliasing. Aliasing artifacts occur when

the sampling rate is below the Nyquist limit [31]. There are two more conventional ap-

proaches used to reduce such aliasing: supersampling and mipmapping. We discuss these

before discussing our smoothing compiler.

Supersampling increases the spatial sampling rate, so that the output value for each pixel

is based on multiple samples. The sampling rate can either be uniform across the image, or it
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Figure 5.2: An overview of our compiler framework. The key components are: approximation
rules, quality improvements, and genetic search. In approximation rules (Section 5.4 - 5.5),
a variety of approximation methods are implemented to smooth the input function. All
smoothed program variants are selected through a genetic search (Section 5.6), which finds
a Pareto frontier that optimally trades off program running time and error.

can also be chosen adaptively based on measurements such as local contrast [34, 83, 51, 84].

This approach in the limit recovers the ground truth image, but can be time-consuming due

to requiring multiple samples per pixel.

Mipmapping typically stores precomputed integrals in mipmaps [141]. A similar approach

can also store precomputation into summed-area tables [32]. It offers the benefit of accurate

solutions with a constant number of operations, provided that the shading function can

be spatially tiled or otherwise represented on a compact domain. However, in practice,

many interesting shaders do not tile, so this limits the applicability of the method. Further,

mipmapping increases storage requirements and may replace inexpensive computations with

more expensive memory accesses. This approach is not practical for functions of more than

two or three variables because memory costs scale exponentially.

Other than the conventional approaches, an alternative strategy is to construct a ban-

dlimited variant of the shading function by symbolic integration. This can be expressed by

convolving the shading function with a low-pass filter [97]. Exact analytic band-limited for-

mulas are known for some specialized functions such as noise functions [65]. In most cases,

however, the shader developer must manually calculate the convolution integral. However,

frequently the integrals cannot be solved in closed form, which limits this strategy.
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We take a different approach than most previous work, by using a compiler framework

to smooth an input program. We show an overview of this process in Figure 5.2. Our goal

is to efficiently smooth an arbitrary input function represented as a program, by accurately

approximating its convolution with a Gaussian kernel. This convolution could be multidi-

mensional: for shader programs, the dimension is typically 2D for spatial coordinates. We

would also like the output program to be as efficient as possible. The compiler takes the pro-

gram as input, and decomposes it into atomic parts whose bandlimited solutions are easier

to obtain (Section 5.3). We then connect different smoothed atomic parts using their mean

and variance statistics. Specifically, each intermediate value in the computation is treated as

a random variable under a certain probability distribution, which can be modeled using their

mean and variance. A key insight in our work is that modeling the random variable with

their second-order variance statistic allows us to derive more accurate smoothing rules than

previous work [35] that only considers first-order mean statistics. Intuitively, the second-

order statistic (variance) of the input variables corresponds to the smoothing kernel size used

in the convolution, and the first-order statistic (mean) of the output variables corresponds

to the smoothed function value as if the original program was convolved with the smoothing

kernel defined by the input random variables. Therefore, we can smooth arbitrary programs

that operate over floating-point numbers. Naturally, our approach can be applied to ban-

dlimit shader programs, by taking input of a shader with potential aliasing, and producing

an output bandlimited approximation that convolves the original program with a Gaussian

kernel.

A key component in our framework is the set of smoothing rules used to approximate

mean and variance statistics for different atomic parts. We design a novel adaptive Gaussian

approximation rule (Section 5.4) that accurately handles multivariate Gaussian distributed

inputs. It is exact for a larger class of functions than previous work, and is accurate to

the second power of the standard deviation for functions with certain analytic properties.

The previous work of Dorn et al. [35] also provides one such approximation rule. It can
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(a) Input (b) Adaptive, (c) Dorn et al., (d) MC sampling, (e) Compact,
(Section 5.4) (Section 5.5.1) (Section 5.5.2) (Section 5.5.3)

Figure 5.3: A visual example of our approximate smoothing rules. (a) The input program
is the function y = f(x) = sin(x2). This program is further decomposed as the compo-
sition of two atomic parts that are easy to smooth: sin() and x2. The “ground truth”
that correctly smoothes the program (f̂(x)) is shown in blue dashed curves in subfigures
(b-e). It is evaluated by supersampling with a very high sample rate. The orange lines in
subfigures (b-e) approximate the ground truth convolution by using different approximation
rules: (b) adaptive Gaussian approximation (Section 5.4); (c) Dorn et al. [35] (Section 5.5.1);
(d) Monte Carlo sampling approximation with 8 samples (Section 5.5.2); (e) compactly sup-
ported kernels approximation (Section 5.5.3). The dark red subplots in (b-e) give an abstract
illustration of actual smoothing kernels used in each method. We use a standard deviation
of σ = 0.25 for all input distributions.

be viewed as a simplified version of our adaptive Gaussian rule with less accurate modeling

for the second-order variance statistic. We integrate it into our framework and improve its

accuracy. We also explain a class of programs for which it gives exact results (Section 5.5.1).

We further adopt Monte Carlo sampling (Section 5.5.2) to our framework. This guarantees

that our approximation can resort to a known acceptable result in the worst case. For our

last approximation rule, we discuss how compactly supported kernels (Section 5.5.3) can be

used for parts of the computation that may be undefined for a certain region. Figure 5.3

illustrates these four different rules by applying each of them to a simple 1D function. In

particular, note the previous work of Dorn et al. [35] performs poorly when the frequency

of the function changes across spatial coordinates (Figure 5.3 c). This happens often for

shaders because of foreshortening: frequency changes occur as a texture becomes distant

from the camera.

While our primary goal is to accurately approximate the program’s convolution with a

Gaussian kernel, the approximation needs to be efficient as well. The various smoothing
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rules introduced in Figure 5.3, therefore, provide us some freedom in exploring the space of

different smoothing approximations to trade-off efficiency and accuracy. Specifically, we use

a genetic search algorithm to apply different smoothing rules to individual and connected

groups of atomic parts. The search algorithm finds Pareto-optimal smoothing variants that

optimally trade off running time and approximation error (Section 5.6).

We apply this framework to the problem of automatically bandlimiting procedural shader

programs in Section 5.7. We evaluate our method on a variety of geometries and complex

shaders, including shaders with parallax mapping, animation, and spatially varying statistics.

We compare the performance with Dorn et al. [35] and supersampling. Our framework gives

a wider selection of band-limited programs with less error than Dorn et al. [35], and is

frequently an order of magnitude faster than supersampling for comparable errors.

5.2 Related work

Mathematics and smoothing. Smoothing a function is beneficial in domains such as op-

timizing non-convex or non-differentiable objectives [93, 24, 23]. In numerical optimization,

this approach is sometimes known as the continuation method or mollification [40, 39, 145].

In our framework, we model the smoothing process on the input program by relating the

statistics of each variable, and applying a variety of approximations to smooth the program.

Our idea of associating a range with each intermediate value of a program is conceptually

similar to interval analysis [89]. Chaudhuri and Solar-Lezama [22] developed a smoothing

interpreter that uses intervals to reason about smoothed semantics of programs. The homo-

geneous heat equation with initial conditions given by a nonsmoothed function results in a

smoothing process, via convolution with its Green’s function, the Gaussian. Thus, connec-

tions can be made between convolution with a Gaussian and result for the heat equation,

such as  Lysik [78] and the Hamilton-Jacobi-based Proximal [100].
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Procedural shader antialiasing. The use of antialiasing to remove sampling artifacts is

important and well-studied in computer graphics. The most general and common approach

is to numerically approach the band-limited signal using supersampling [6]. Stochastic sam-

pling [34, 31] is one effective way to achieve this. The sampling rate can be effectively lowered

if it is adaptively chosen according to the contrast of the pixel [34, 83, 51, 84]. In video

rendering, samples from previous frames can also be reused for computation efficiency [147].

An alternative to sample-based antialiasing is to create a band-limited version of a procedu-

ral shader. This can be a difficult task because analytically integrating the function is often

infeasible. There are several practical approaches [36] that approximate the band-limited

shader functions by sampling. This includes clamping the high-frequency components in the

frequency domain [97], and producing lookup tables for static textures using mipmapping

[141] and summed area tables [32].

Like our work, and unlike most other work in this area, Dorn et al. [35] use a compiler-

driven technique to approximate a smoothing convolution by decomposing an arbitrary input

program into atomic parts that we know how to individually smooth. Like our work, Dorn et

al. uses a genetic search to select between these rules. The method of Dorn et al. performs

poorly when a function changes in frequency across the spatial coordinates (as shown in

Figure 5.3(b)). This happens frequently in shader programs because of foreshortening: the

convolution integral is across screen-space pixels, therefore even stationary textures will have

frequency changes as they become more distant from the camera. We adapt Dorn et al. as

one of the approximation rules into our framework with two improvements: better standard

deviation estimates and the collection of a Pareto frontier of smoothed programs instead

of one single output program. Unlike Dorn et al. [35], which models only mean statistics,

our framework flexibly incorporates both mean and variance statistics. We also use several

approximations that have higher accuracy, which can better model textures that change in

spatial frequency due to foreshortening. Our framework is general and can apply to arbitrary

programs: we simply explore shaders as an example application.
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Heuristic search over programs. Genetic algorithms and genetic programming (GP)

are general machine learning strategies that use an evolutionary methodology to search for

a set of programs that optimize some fitness criterion [63]. In computer graphics, Kensler

and Shirley [61] demonstrated that genetic algorithms could be used to optimize ray-triangle

intersection routines. Sitthi-Amorn et al. [121] described a GP approach to the problem of

automatic procedural shader simplification. Other researchers have also investigated auto-

matic shader simplification by heuristic search methods that simplify programs [98, 105, 54],

and by jointly modifying shaders and geometry [133]. Brady and colleagues [15] showed how

to use GP to discover new analytic reflectance functions. We use a similar approach as [121]

to automatically generate the Pareto frontier of approximately smoothed functions.

5.3 Decomposition and Associated Notation

This section provides preliminaries to prepare the derivation of approximation rules intro-

duced in Section 5.5. Section 5.3.1 first describes how the input program is decomposed into

atomic parts. Next, Section 5.3.2 defines math notations associated with these atomic parts.

5.3.1 Decomposing the Input Program into Atomic Parts

Most input programs lack a closed-form solution for their convolution with a Gaussian kernel.

We, therefore, decompose the computation graph into atomic parts that individually have

known closed-form solutions. We then compute the approximate mean and variance statistics

for each part, and substitute the mean and variance that are output from one group of

compute nodes as the inputs for any subsequent compute nodes. We now elaborate on how

this is done.

Our compiler-based framework assumes the input program has a compute graph, where

each node represents a floating-point computation, and the graph is a directed acyclic graph

(DAG). This compute graph is constructed directly by the programmer using atomic op-
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erations such as addition, multiplication, and trigonometric functions. We use lower-case

letters such as x and y to represent real values (scalars) in the input program. These can be

either input, output, or intermediate values. We use corresponding capital letters such as

X and Y to represent random variables associated with the scalars in the compute graph.

In our implementation, we assume the random variables associated with the program input

are independently Gaussian distributed. This is not limiting because dependencies such as

a joint Gaussian distribution can be easily created by a linear transformation. For each

node X in the computation, we use µX to denote its mean and σ2
X for its variance. Note

we use these random variables as a helpful conceptual device to determine statistics, but in

most cases, we never explicitly sample from these distributions (except for Monte Carlo sam-

pling in Section 5.5.2). Our compiler then carries mean and variance computations forward

through the compute graph, using the various approximate smoothing rules of Section 5.5,

and collects the smoothed output value by taking the mean value of the output variable.

As an example, for shader bandlimiting, the input variables are the 2D screen coordinate

(x, y), with associated random variables, X and Y . For the random variables, the means are

the pixel positions, µX = X, and µY = y, and the standard deviations are σX = σY = 0.5,

i.e. half a pixel, to suppress aliasing beyond the Nyquist rate. Our compiler then gathers

the mean of the output random variables to obtain the bandlimited color.

5.3.2 Math Notation For Smoothing a Single Atomic Part

This section defines the notation we will use for smoothing a single atomic part of a pro-

gram. This can be done by either using convolutions or random variables, in two equivalent

notations. First, we note that throughout the paper, we use bold to indicate vectors and

matrices. In some cases, we might consider the case where a random variable is scalar-valued,

which we could denote as X, and then we might later consider the case of a random vector,

which we might similarly denote as X. To avoid confusion between these similar symbols, in

this situation we first indicate in the text whether the variable is a scalar or vector quantity.

161



We now present our smoothing operator. Assume we are smoothing a function f : Rn →

Rm, which maps inputs x to outputs y. We use the ˆ operator to denote smoothing using

convolution, so the smoothed function is f̂(x,Σ), defined as:

f̂(x,Σ) = (f ∗G)(x)

=

∫
Rn

f(x− u)G(u,Σ)dnu

=

∫
Rn

f(u)G(x− u,Σ)dnu

(5.1)

In Equation 5.1, G(u,Σ) is the smoothing kernel that is used to smooth the original

function f(x), Σ is a covariance matrix associated with the kernel (more precisely, Σ is

the covariance matrix of the random vector with a probability density function given by

the kernel G), and the convolution is over the first variable of each function. To more

explicitly identify the kernel as being G, we can also use the notation f̂G(x,Σ). For isotropic

kernels, which have the same standard deviation σ for all dimensions, we also use f̂(x, σ2)

as shorthand for f̂(x, Iσ2), where I is the identity matrix. The convolution kernel G(x,Σ)

can be any non-negative kernel that integrates over Rn to one. This allows us to interpret

the kernel also as a probability density function. In our framework, we frequently use the

Gaussian kernel, which we conveniently center at the origin:

G(u,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
uTΣ−1u

)
(5.2)

In the case of a 1D Gaussian kernel, this simplifies to the more familiar form:

G(u, σ2) = 1/
√

2πσ2 exp[−u2/(2σ2)] (5.3)
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In the case of an isotropic Gaussian distribution with covariance Σ = Iσ2, where I is the

identity matrix, this simplifies to:

G(u, σ2) = (2πσ2)−n/2 exp
(
−∥u∥2 /(2σ2n)

)
(5.4)

If f(x) happens to be a shader program, then as is discussed in [35], f̂(x,Σ) is simply a

band-limited version of the same procedural shader function.

We now show the connection between the convolution of Equation 5.1 and the random

variables associated with a program’s computations. We assume that in the input program,

an intermediate scalar random value Y is computed by applying a scalar-valued function f

to an input random vector X (in Rk), i.e., Y = f(X). If the probability density function of

X is gX, then by the law of the unconscious statistician, µY is:

µY = E[f(X)] =

∫
Rk

f(u)gX(u)dku (5.5)

As an example, if the input random vector X is normally distributed as X ∼ N (µX, ΣX),

then Equation 5.5 becomes:

µY =

∫
Rk

f(u)G(u− µX,ΣX)dku

= (f(u) ∗G(u,ΣX))(µX)

= f̂(µX,ΣX)

(5.6)

Thus, we find that we can switch between two equivalent notations. In “convolution

notation,” we can write µY = f̂(µX,ΣX). This is the same as using “random variable nota-

tion” and writing E[f(X)]. This gives some intuition for how we can either use convolutions

or expectations of random variables to smooth programs. One detail is that if the input

random vector X has a different probability density function, we need to convolve with a

different kernel. For example, we also consider box filters in this paper. Our framework
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provides different methods to approximate the mean and variance terms. We describe them

in the following section.

5.4 Adaptive Gaussian Approximation

Using the machinery from the previous section, we can now decompose the input program

into atomic parts, and represent these as a directed acyclic graph (DAG). Each part accepts

one or more inputs, which are modeled as Gaussian distribution according to mean and vari-

ance statistics, and outputs a variable, which is also modeled as Gaussian distribution. This

section discusses our novel adaptive Gaussian approximation rule used to compute the mean

and variance of the output variable. Section 5.5 further presents other approximation rules

integrated into our framework that allow different trade-offs between efficiency, accuracy,

and noise.

The adaptive Gaussian approximation models the input variables to a compute node as

multivariate Gaussian distributions. It also approximates the output of the node as Gaussian

by collecting its mean and variance statistics. Therefore, this approximation rule models the

correlations between variables, allowing the variance of the output Gaussian distribution to

adapt to the input as well as previous computations the input variable depends on.

Consider the function f : Rn → R and a jointly Gaussian distributed random vector

X ∼ N (µX, ΣX), we wish to approximate the mean and variance statistic for the scalar-

valued output random variable Y = f(X). We approximate µY by convolving the function

f with a Gaussian kernel:

µY = f̂(µX,ΣX) (5.7)

This is the same as the result we derived in Equation 5.6. Here f̂(µX,ΣX) is computed

from its definition in Equation 5.1. We will first discuss the more common case when

f : R → R is a univariate function in Section 5.4.1, followed by a multivariate case in
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Section 5.4.2. Finally, we will discuss the conditions when this approximation rule is exact,

and establish error bounds when the rule is not exact in Section 5.4.3.

5.4.1 Smoothing Univariate Functions

Section 5.5.4 Table 5.1 summarizes the commonly used univariate functions and their cor-

responding smoothed form f̂ . This includes polynomials, reciprocal, sine, cosine, tangent,

hyperbolic trigonometric functions, exponent, Heaviside step, fract, floor, and ceiling, and

the squares of these functions. For example, if y = sin(x), and we are using a Gaussian kernel,

then we can use Equation 5.7 and look up in Table 5.1 to obtain µY = sin(µX) exp(−σ2
X/2).

Note here we use σX because, for unary functions, the input X is a scalar as well.

The standard deviation is determined based on the definition of the variance of Y:

σ2
Y = E[Y 2] − E[Y ]2

= f̂ 2(µX ,ΣX) − f̂ 2(µX ,ΣX)

(5.8)

5.4.2 Smoothing Multivariate Functions

Our compiler supports several binary functions, including the standard addition, multipli-

cation, etc., as well as a ternary select operator that supports branching.

We first discuss the binary functions. Suppose a binary function f(a, b) takes scalar

inputs a, b and the associated random variables are A and B, respectively. We make the

assumption that A and B are distributed according to a bivariate Gaussian:

A,B ∼ N


µA

µB

 ,

 σ2
A ρσAσB

ρσAσB σ2
B


 (5.9)
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σA and σB are standard deviations of A and B. These can be determined directly by

applying the approximation rules to the input nodes A and B. ρ is the correlation term

between A and B, Section 5.4.2.1 details how ρ can be decided.

The mean and standard deviation for the binary functions of addition (A+B), subtraction

(A−B) and multiplication (A·B) can be derived from these assumptions based on properties

of the Gaussian distribution [109]:

µ(A±B) =µA ± µB

σ2
(A±B) =σ2

A + σ2
B ± 2ρσAσB

µ(A·B) =µAµB + ρσAσB

σ2
(A·B) =µ2

AσB + σAµ
2
B + 2ρµAµBσAσB + σ2

Aσ
2
B(1 + ρ2)

(5.10)

The binary function division f(a, b) = a/b is always reduced to multiplication and a

function composition: a · b−1. Here, g(b) = b−1 is a univariate function with a singularity at

b = 0. Technically, the mean and variance, therefore, do not exist if the Gaussian kernel is

used. We work around this singularity by approximating using a compact kernel with finite

support (Section 5.5.3).

The modulo function, fmod(a, b) = a%b, can be rewritten as fmod(a, b) = b · fract(a/b).

Here, fract(x) is the fractional part of x. We make the simplifying assumption that the

second argument b of mod is an ordinary (non-random) variable (so σB = 0), to obtain:

µmod =µB · f̂ract(
µA

µB

,
σ2
A

µ2
B

)

σ2
mod =µ2

B · f̂ract2(
µA

µB

,
σ2
A

µ2
B

) − µ2
mod

(5.11)

Comparison functions (>,≥, <,≤) are approximated by converting them to univariate

functions including the Heaviside step function H(x). As an example, the function greater

than (>) can be rewritten as f>(a, b) = H(a − b). This reduces to the univariate case in

Section 5.4.1.
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Finally, our compiler also supports the ternary select(a, b, c) function, which returns b

if a is non-zero, otherwise c. We follow Dorn et al. [35] to approximate this as a linear

interpolation based on binary operators: select(a, b, c) = a · b + (1 − a) · c.

5.4.2.1 Determining ρ for Bivariate Gaussian Distributions

For binary functions, we approximate the input random variables A and B as bivariate

Gaussian with correlation coefficient ρ (Equation 5.9). In general, it is difficult to determine

ρ, because evaluating ρ exactly involves an integral over the entire subtrees of the compu-

tation. In our framework, we provide three options to approximate ρ: (1) Assume ρ is zero;

(2) Assume ρ is a constant for each node that is estimated by sampling; and (3) Estimate ρ

based on a simplified assumption that the given nodes are affine functions of the inputs.

Estimate constant ρ by sampling. In the preprocessing stage, we use n samples to

approximate ρ of two random variables A and B. The samples drawn from these two

distributions are represented as ai and bi with the corresponding sample means a and b.

Thus, ρ can be estimated by:

ρ =

∑n
i=1(ai − a)(bi − b)√∑n

i=1(ai − a)2
√∑n

i=1(bi − b)2
(5.12)

Estimate ρ by an affine assumption. We assume for the binary function f , its input

variables a and b are affine transformations of the entire program’s input variables x1, ...,

xn. a and b can therefore be expressed as:

a = ac +
n∑

i=1

aixi, b = bc +
n∑

i=1

bixi (5.13)

In Equation 5.13, ac and bc does not affect the computation of ρ and therefore will

be ignored. ai and bi are coefficients of the affine transformation, and are approximated by
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computing the gradient of a and b with respect to the inputs xi via automatic differentiation:

ai =
da

dxi

bi =
db

dxi

Finally, we can express ρ as:

ρ =

∑n
i=1 aibi√∑n

i=1 a
2
i

√∑n
i=1 b

2
i

(5.14)

Note that the resulting ρ estimate for Equation 5.14 is exact if the nodes are actually

affine with respect to the inputs, and otherwise is accurate to second order in σ.

We explored these different rules in our genetic search (Section 5.6). In practice, we find

that simply using rule (1), ρ = 0 typically gives good results already. If the other rules (2)

and (3) are also included, minor quality improvements are gained, but these rules are used

relatively rarely by our genetic search process of Section 5.6.

5.4.3 Discussion on Approximation Accuracy

One natural question we may ask is, for what functions does the adaptive Gaussian approx-

imation rule result in the exact answer? More precisely, we wish to determine a class of

programs when recursively applying the adaptive Gaussian rule to each atomic part, the

mean of the output node matches Equation 5.1 exactly. Because any affine transformation

of a multidimensional Gaussian results in another multidimensional Gaussian, this approx-

imation rule gives the exact smoothing result for any atomic function f(Ax) that we know

smoothed f̂ for (i.e. in Table 5.1), where A is any affine transformation, and x is vector of in-

put variables that are Gaussian distributed. Additionally, because E[X +Y ] = E[X] +E[Y ]

holds for any random variables, and E[X · Y ] = E[X] · E[Y ] holds for any independent

random variables X and Y , we can further extend our class of exact programs to any linear

combination of f(Ax) whose smoothed result is exact, as well as separable products with

independent input variables. For example, the adaptive Gaussian rule gives exact result for
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g(x, y, z) = ((2x + y)2 + cos(y − 2x))z2 because exact smoothing results are available for

polynomials and cosine.

A second question we can ask is: if the answer is not exact, to what order is the result

accurate? Suppose for simplicity that the input variables are independent and Gaussian

distributed, each with a standard deviation of σ. By using Green’s function [7] on the

convolution of Equation 5.1 , we can find a Taylor expansion for the function f̂(x, σ2) in

terms of f(x):

f̂(x, σ2) = f(x) +
1

2
σ2∇2f(x)+

1

(2!)22
σ4∇4f(x) + . . . (5.15)

The derivation of Equation 5.15 assumes that f is real analytic on Rn, and can be extended

to a holomorphic function on Cn, so that all the derivatives exist, and the Taylor series has

an infinite radius of convergence [137]. This class of functions includes polynomials, sines,

cosines, and compositions of these. The function should also be bounded by exponentials:

the precise conditions are discussed by  Lysik [78]. These properties could hold for some

shader programs, but even if they do not hold for an entire program, they often hold for

program sub-parts.

For a univariate function, we show our approximation is accurate up to σ2 terms for

a single function composition. Multiple function compositions can be proved similarly via

induction.

Suppose we wish to approximate the composition of two functions: f(x) = f2(f1(x)),

where f1, f2 : R → R. Assume the input random variable is X0 ∼ N (x, σ2): the Gaussian

kernel centered at x. The output from f1 is an intermediate value in the computation: we

can represent this with another random variable X1 = f1(X0). We can similarly represent

the output of f2: X2 = f2(X1) = f2(f1(X0)) = f(X0).
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We apply Equation 5.8 and Equation 5.15 to X1 = f1(X0) and derive the following mean

and standard deviation for X1.

µX1 = f̂1(x, σ
2)

= f1(x) +
1

2
σ2f

′′

1 (x) + O(σ4)

f̂ 2
1 (x, σ2) = f 2

1 (x) +
1

2
σ2 ∂2

∂x2
(f 2

1 (x)) + O(σ4)

= f 2
1 (x) +

1

2
σ2(2f1f

′′

1 + 2(f
′

1)
2)(x) + O(σ4)

σ2
X1

= f̂ 2
1 (x, σ2) − f̂1(x, σ

2)2

= σ2(f
′

1)
2(x) + O(σ4)

(5.16)

Our rule approximate X1 as a Gaussian distribution with mean and variance from Equa-

tion 5.16: N (µX1 , σ
2
X1

). We similarly compute µX2 based on Equation 5.15, Equation 5.16,

and repeated Taylor expansion in σ around σ = 0.

µX2 =f̂2(f̂1(x, σ
2), σ2

X1
)

=f2(f1(x) +
1

2
σ2f

′′

1 (x) + O(σ4)) +
1

2
σ2
X1
f

′′

2 (f̂1(x, σ
2)) + O(σ4

X1
)

=f(x) +
1

2
σ2f

′

2(f1(x))f
′′

1 (x) +
1

2
σ2f

′′

2 (f1(x))(f
′

1)
2(x) + O(σ4)

=f(x) +
1

2
σ2f

′′
(x) + O(σ4)

(5.17)

Comparing Equation 5.17 with Equation 5.15, we conclude our approximation agrees up

to the second order term in the Taylor expansion.

This property can be similarly proved via induction for multiple function compositions.

We, therefore, conclude that for functions with certain analytic properties, the adaptive

Gaussian rule is accurate to σ2.

Note there are also other second-order accurate approximations, such as simply truncating

the Taylor expansion in Equation 5.15 to use only the first and second terms. Figure 5.4 gives
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approximation (§5.4) expansion (Equation 5.15)
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Figure 5.4: A comparison of different approximation techniques. (a) The input function
f(x) = sin(x2)+ 1

100
x2. The ground truth correctly band-limited functions f̂(x) are shown in

blue in subfigures (b-c). These were determined by sampling at a high sample rate. (b) Our
adaptive Gaussian approximation (Section 5.4) is shown in orange and compared against the
ground truth in blue. The approximation is good. (c) A truncated Taylor expansion with
10 terms does not result in smoothing.

an example that our adaptive Gaussian approximation is still more accurate. The truncated

Taylor expansion results in amplifying high frequencies, instead of attenuating them.

5.5 Additional Approximate Smoothing Rules

This section discusses several other approximation rules used to compute the mean and

variance of the output variable. They allow different trade-offs between efficiency, accuracy,

and noise. Different rules are visualized in Figure 5.3.

5.5.1 Approximation of Dorn et al. 2015

We integrate the approximation rule described in Dorn et al. [35] as one of our approximation

options. Similar to our adaptive Gaussian rule (Section 5.4), Dorn’s rule also approximates

function smoothing by convolving with a Gaussian kernel. Suppose an intermediate scalar

variable y is computed from another scalar variable x, and the associated random variables

are Y and X, respectively, where Y = f(X). Then µY is identical to the univariate case of
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Equation 5.7 in the Gaussian adaptive rule:

µY = f̂(µX , σ
2
X) (5.18)

Different from the adaptive Gaussian rule, Dorn’s rule makes simplified assumptions

to determine σY : the output σ is a linear combination of the axis-aligned input σs in each

dimension. They are determined by simple rules such as σ for addition and subtraction is the

sum of input σs, and σ for multiplication or division is the product or quotient, respectively,

of the input σs. In all other cases, including function calls, the output σ is the average of

the non-zero σs of all the inputs.

We further make two improvements to Dorn et al. [35] before integrating their rule into

our framework. The first improvement gives better standard deviation estimates, and the

second collects a Pareto frontier. For the standard deviations (known as “sample spacing”

in Dorn et al. [35]), we detect the case of multiplication or division by a constant and adjust

the standard deviation accordingly (i.e. σaX = |a|σX). This improvement helps give more

accurate estimates of the standard deviations and therefore reduces the artifact seen in

Dorn et al. [35] Figure 5(c), where their approximation has substantially wrong variances.

Our second improvement is to collect not just a single program variant with the least error,

but instead a Pareto frontier of program variants that optimally trade off running time and

error. This process is described later in Section 5.6.

5.5.1.1 Discussion on Approximation Accuracy

Similar to Section 5.4.3, we can also ask: for what class of functions does the improved

Dorn et al. [35] approximation result in the exact answer? Even for linear functions, Dorn’s

approximation gives incorrect variance. For example, Dorn’s estimate incorrectly approxi-

mates Var(X − X) as (2σX)2 when it should be zero. However, if a Gaussian distributed

input variable is multiplied by or added to a constant, this rule results in the correct mean
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and variance. Therefore, this rule gives exact smoothing results for linear combinations or

separable products of functions f(ax+ b) where the smoothing result f̂ is exact, and a, b are

constant. For example, Dorn’s rule is exact for g(x, y, z) = ((2x)2 + cos(y))z2 because exact

smoothing results are available for polynomials and cosine. Note this is a smaller class of

programs than our adaptive Gaussian rule presented earlier because the argument to f is

only univariate affine (ax + b) rather than multivariate affine.

5.5.2 Monte Carlo Sampling

We adapt Monte Carlo stochastic sampling [29, 34] to our framework. The compiler first

identifies each largest connected sub-graph of the compute graph where the nodes within sub-

graphs are specified to use Monte Carlo sampling. For each sub-graph f , we then identify

their inputs, X1, . . . , Xm. These could either be input random variables to the entire input

program, or intermediate variables calculated as the output from other parts of the compute

graph. For simplicity, here we assume these inputs are independent Gaussian distributions

based on their specified means µXi
and standard deviations σXi

. For each output of the

sub-graph f : Y = f(X1, ..., Xm), we compute its mean and standard deviation by sampled

estimators:

µY =
1

n

n∑
i=1

f(µX1 + Ni,1σX1 , ..., µXm + Ni,mσXm)

σ2
Y =

1

n

n∑
i=1

f 2(µX1 + Ni,1σX1 , ..., µXm + Ni,mσXm) − µ2
Y

(5.19)

Here, each Nij is a random number independently drawn from a normal distribution

N (0, 1), and n is the number of samples. We also experimented with applying Bessel’s

correction [124] to correct the bias in variance that occurs for small sample counts n. But

we find in practice, it does not have a significant improvement on the result for our system.

The approximation converges to the ground truth for large sample numbers, and the out-

put program simplifies to supersampling [29] when the entire input program is approximated
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using the Monte Carlo sampling. The error of the Monte Carlo sampling σM is estimated as

[41]:

σM ≈ σY√
n

(5.20)

Here, σY is the standard deviation computed from Equation 5.19 and n is the number

of samples. This approximation rule becomes more accurate in the limit of large sample

numbers.

5.5.2.1 Optional Denoising

For small sample count, Monte Carlo approximation can be noisy. A variety of techniques

have been developed to filter such noise [60, 8, 116]. Specifically, we implement the non-

local means denoising [16, 17] with Laplacian pyramid [74] for optional denoising. We find

that aesthetically appealing denoising results can be obtained using a three-level Laplacian

pyramid, with a patch size of 5, a search radius of 10, and the denoising parameter h is 10 for

the lower resolutions, and searched over or set by the user for the finest resolution. We allow

our genetic search process (Section 5.6) to search over a variety of denoising parameters for

the best result. However, because the denoising algorithm incurs time overhead, it usually

does not optimally trade off accuracy and efficiency, therefore being only rarely chosen.

Therefore, in our current setup, denoising is typically specified manually.

5.5.3 Compactly Supported Kernels Approximation

Because the Gaussian kernel has infinite support, it cannot be used on functions with un-

defined regions. For example,
√
x is only defined on non-negative x, and its convolution

with a Gaussian using Equation 5.1 does not exist. However, even if an input program

contains such functions as sub-parts, the entire program may still have a well-defined result,

so smoothing should still be possible for such programs. To handle this case, we introduce

compactly supported kernels.
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Results for certain compactly supported kernels can be obtained by using repeated con-

volution [55] of boxcar functions. This is because such kernels approximate the Gaussian by

the central limit theorem [135]. In our framework, we use box and tent kernels to approxi-

mately smooth functions with undefined values. Because the convolution with a box kernel

is easier to compute, this approximation can also be used when the Gaussian convolution

does not have a closed-form solution. Table 5.1 lists smoothing results for commonly used

functions with the box kernel.

When integrating against a function that has an undefined region, it is important to

make sure that the integral range does not intersect with the undefined regions. We solve

this by adapting the kernel size based on where this integral is evaluated at. As a result,

technically the integral is no longer a convolution, because it is not shift-invariant. When

evaluating the integral at x, we first compute the distance r from x to the function’s nearest

undefined point. If the convolution kernel’s original half-width is h, we will rescale it to

min(h, λr) where λ is a constant less than one. In practice, we use λ = 0.5.

We can further utilize this truncation mechanism to better model functions such as

fract(x) = x− ⌊x⌋, which have many discontinuities. Clearly, fract() is discontinuous when-

ever x is at an integer value. If we naively input a distribution that spans a discontinuity,

such as X ∼ N (0, 0.12), into fract(), the output Y = fract(X) becomes bimodal, with some

values close to zero, and others close to one. Directly computing the mean of this bimodal

distribution results in 0.5, which is far away from either of the two modes. This may result

in a poor approximation, which can show up in tiled pattern shaders (where fract is used

for tiling) as a bias towards the center of the tile’s texture. One potential fix would be to

stochastically sample either mode. However, this introduces sampling noise. Instead, we

truncate the filter at the discontinuity when the original kernel support is smaller than a

truncation constant T1 (in practice, we use T1 = 1/4). When the original kernel support is

above a larger truncation constant T2 (we use T2 = 1/2) we do not truncate. In between

kernel sizes T1 and T2 we rescale the kernel size linearly between these endpoints.
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5.5.4 Summary of Atomic Function Smoothing

Table 5.1 summarizes functions and their corresponding convolutions with box and Gaussian

kernels. These are needed for the approximations we developed previously. This table can

be viewed as an extension of the table presented in Dorn et al. [35]. In particular, for each

function f(x), we smooth both f(x) as well as f 2(x) (e.g. if we report cos(x) then we also

report cos2(x)). This is needed to determine the standard deviations output by a given

compute stage for the adaptive Gaussian approximation rule of Section 5.4.

In the remainder of the section, we discuss the derivation of two types of functions in

Table 5.1: the polynomials xn and the periodic functions.

Table 5.1: A table of univariate functions, and their corresponding bandlimited result,
using a box kernel B and a Gaussian G. The box kernel is the PDF of the uniform
random variable U [−

√
3σ,

√
3σ]. The Gaussian kernel is the PDF of the random

variable N (0, σ2). Each random variable has a standard deviation σ. We define
sinc(x) = sin(x)/x, and the Heaviside step function H(x) is 0 for x ≤ 0 and 1 for
x positive. Note that functions with undefined regions, such as xp for negative or
fractional p have σ limited as described in Section 5.5.3.

Function Box kernel Gaussian kernel

f(x) f̂B(x, σ2) f̂G(x, σ2)

xp, p ̸= −1 1√
12σ(p+1)

[
(x +

√
3σ)p+1 − (x−

√
3σ)p+1

]
He

[−σ2]
p (x)

x−2 (x2 − 3σ2)−1

x−1 1√
12σ

log
∣∣∣x+√

3σ
x−

√
3σ

∣∣∣
x x x
x2 x2 + σ2 x2 + σ2

x3 x3 + 3xσ2 x3 + 3xσ2

x4 x4 + 6x2σ2 + 9
5
σ4 x4 + 6x2σ2 + 3σ4

x5 x5 + 10x3σ2 + 9xσ4 x5 + 10x3σ2 + 15xσ4

√
x 1

3
√
3σ

[
(x +

√
3σ)3/2 − (x−

√
3σ)3/2

]
sin(x) sin(x) sinc(

√
3σ) sin(x)e−

σ2

2

cos(x) cos(x) sinc(
√

3σ) cos(x)e−
σ2

2

tan(x) −1√
12σ

log
∣∣∣ cos(x+√

3σ)

cos(x−
√
3σ)

∣∣∣
sinh(x) 1√

12σ
(cosh(x +

√
3σ) − cosh(x−

√
3σ)) 1

2
(ex+

1
2
σ2 − e−x+ 1

2
σ2

)

cosh(x) 1√
12σ

(sinh(x +
√

3σ) − sinh(x−
√

3σ)) 1
2
(ex+

1
2
σ2

+ e−x+ 1
2
σ2

)

(Continued on next page)
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Table 5.1: (continued)

Function Box kernel Gaussian kernel

f(x) f̂B(x, σ2) f̂G(x, σ2)

tanh(x) 1√
12σ

(log(cosh(x +
√

3σ)) − log(cosh(x−
√

3σ)))

sinh2(x) 1
8
√
3σ

(−4
√

3σ + sinh(2
√

3σ − 2x) + sinh(2
√

3σ + 2x))

cosh2(x) 1
8
√
3σ

(4
√

3σ + sinh(2
√

3σ − 2x) + sinh(2
√

3σ + 2x))

tanh2(x) 1
2
√
3σ

(2
√

3σ − tanh(
√

3σ − x) − tanh(
√

3σ + x))

ex 1√
12σ

(
ex+

√
3σ − ex−

√
3σ
)

ex+
1
2
σ2

sin2(x) 1
2
− 1

2
cos(2x) sinc(

√
12σ) 1

2
− 1

2
cos(2x)e−2σ2

cos2(x) 1
2

+ 1
2

cos(2x) sinc(
√

12σ) 1
2

+ 1
2

cos(2x)e−2σ2

tan2(x) 1√
12σ

(
tan(x +

√
3σ) − tan(x−

√
3σ)

)
− 1

H(x)


0 x ≤ −

√
3σ

x
2
√
3σ

+ 1
2

−
√

3σ ≤ x ≤
√

3σ

1 x ≥
√

3σ

1
2
(1 + erf x√

2σ
)

fract(x) 1√
48σ

(fract2(x +
√

3σ) +
⌊
x +

√
3σ

⌋
−

fract2(x−
√

3σ) −
⌊
x−

√
3σ

⌋
)

fract2(x) 1√
108σ

(fract3(x +
√

3σ) +
⌊
x +

√
3σ

⌋
−

fract3(x−
√

3σ) −
⌊
x−

√
3σ

⌋
)

⌊x⌋ x− f̂ract(x)

⌊x⌋2 x̂2 + f̂ract2(x) − F (x +
√

3σ) + F (x−
√

3σ)

where F (x) = 2( ⌊x⌋
3

+ ⌊x⌋(⌊x⌋−1)
4

+ ⌊x⌋f̂ract
2
(x)

2
+ f̂ract

3
(x)

3
)

⌈x⌉ x + f̂ract(−x)

⌈x⌉2 ⌊̂−x⌋2

Polynomials. The bandlimiting result for xn is derived from the property of generalized

Hermite polynomial He
[α]
n (x): the nth noncentral moment of a Gaussian distribution X with

expected value µ and variance σ is a generalized Hermite polynomial [138]:

He[σ]n (µ) =

⌊n
2
⌋∑

k=0

n!

(n− 2k)!k!
(−2)−kµn−2kσk (5.21)

Periodic Functions. We also derive a convenient formula that gives the bandlimited

result for any periodic function if its integral within a single period is known. We extend

the analysis of fract() made by Dorn et al. [35] to any periodic function. We use Heckbert’s
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technique of repeated integration [55] to derive the convolution of a periodic function with

a box kernel.

Specifically, we assume the periodic function f(x) has a period T and its first and sec-

ond integrals within one period are also known. These are denoted as Fp(x) and Fp2(x),

respectively.

Fp(x) =

∫ x

0

f(u)du

Fp2(x) =

∫ x

0

Fp(u)du

x ∈ [0, T )

(5.22)

Using Equation 5.22, we derive the first and second integral of f(x) for any x as follows.

F (x) =

∫ x

0

f(u)du

=
(⌊ x

T

⌋
+ 1

)
· Fp(T ) −

∫ T

x−T ·⌊ x
T ⌋

f(u)du

=
(⌊ x

T

⌋
+ 1

)
· Fp(T ) − Fp(T ) + Fp

(
x− T ·

⌊ x
T

⌋)
=
⌊ x
T

⌋
· Fp(T ) + Fp

(
x− T ·

⌊ x
T

⌋)
(5.23)

F2(x) =

∫ x

0

F (u)du

=

∫ x

0

⌊ u
T

⌋
· Fp(T )du +

∫ x

0

Fp(u− T ·
⌊ u
T

⌋
)du

=Fp(T ) · T
⌊ x

T ⌋−1∑
i=0

i +
(
x− T

⌊ x
T

⌋)
·
⌊ x
T

⌋
· Fp(T ) +

⌊ x
T

⌋
· Fp2(T ) + Fp2

(
x− T

⌊ x
T

⌋)
=Fp(T ) ·

(
T · (q − 1) · q

2
+ (x− T · q) · q

)
+ Fp2(T ) · q + Fp2(x− T · q)

Here, q =
⌊ x
T

⌋
.

(5.24)
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Using Heckbert’s result, the convolution of the periodic function f(x) with a box kernel

that has support [−
√

3σ,
√

3σ] (corresponding to a uniform kernel with standard deviation

σ) is:

f̂(x, σ) =
F (x +

√
3σ) − F (x +

√
3σ)

2
√

3σ
(5.25)

The convolution of the periodic function f(x) with a tent kernel that has support

[−
√

6σ,
√

6σ] (corresponding to a uniform kernel with standard deviation σ) is:

f̂(x, σ) =
F2(x +

√
6σ) − 2 · F2(x) + F2(x−

√
6σ)

6σ2
(5.26)

5.6 Genetic Search

This section describes the genetic search algorithm that automatically assigns approximation

rules to each computation node. The algorithm finds the Pareto frontier of approximation

choices that optimally trade off the running time and error of the program.

We developed this genetic search because it allows users to explore the trade-off between

the efficiency and accuracy of the smoothed program. Although developers can manually

assign approximation rules, we found this to be a time-consuming process that can easily

overlook beneficial approximation combinations. This is because the search space for the

approximations is combinatoric.

Our genetic search closely follows the method of Sitthi-Amron et al. [121]. We adopt their

fitness function and tournament selection rules, and we use the same method to compute

the Pareto frontier of program variants that optimally trade off running time and error with

ground truth, which is precomputed with a high sample count at randomly sampled pixel

coordinates.

We start with “decent initial guesses.” For each approximation rule, we create a program

variant where the rule is applied to all the expression nodes. For such initial guesses, we

also apply single-point cross-over. The cross-over operation partitions the program into two
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parts separated by an arbitrary node, assigns approximation rules from one variant to the

first part of the program, and rules from another variant to the other part. Next, we employ

cross-over and mutation operations to explore the search space. The mutation step chooses

a new approximation rule, and with equal probability, assigns this new rule to 1, 2, or 4

adjacent expression nodes in depth-first order. As an alternative, with equal probability,

the new approximation rule can also be assigned to the whole subtree of an arbitrary node.

We use tournament selection to select program variants for mutation and crossover. Our

tournament selection works by randomly sampling 4 program variants from the population,

eliminating variants that are not Pareto optimal, and then randomly choosing a remaining

program with optimal running time and error.

For the Monte Carlo sampling approximation, during initialization and mutation, we se-

lect sample counts with equal probability from the set {2, 4, 8, 16, 32}. For the determination

of correlation coefficients described in Section 5.4, we pick with equal probability one of the

three options.

5.7 Evaluation

We author 21 shaders and apply them to three geometries to provide a more challenging

and realistic benchmark than Dorn et al. [35], which is only evaluated on planar geometry

with relatively simple shaders. Our shaders include the Phong lighting model, animation,

spatially varying statistics, and parallax mapping. Specifically, we implement the “safer

mapping” formula from Section 4.1.4 of Szirmay-Kalos and Umenhoffer [126] for parallax

mapping. Our 21 shaders were produced by combining 7 base shaders with 3 choices for

parallax mapping: none, bumps, and ripples. In Table 5.2, we describe our base shaders,

the choices for parallax mapping, and the corresponding program complexity. We apply the

shaders on 3 different geometries: an infinite plane and two curved geometries: sphere and

hyperboloid. Each shader program is tuned independently on each of the geometries.
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C
h
ec
ke
rb
o
ar
d

w
it
h
R
ip
p
le
s

0%/1000x 100%/1x 37%/2x 53%/2x 120%/2x

C
ir
cl
es

w
it
h
N
o
n
e

0%/1000x 100%/1x 24%/4x 43%/2x 59%/3x

C
ol
or

C
ir
cl
es

w
it
h
B
u
m
p
s

0%/1000x 100%/1x 40%/4x 81%/2x 62%/3x

F
ir
e

w
it
h
B
u
m
p
s

0%/1000x 100%/1x 22%/18x 80%/2x 22%/18x

Q
u
ad

ra
ti
c
S
in
e

w
it
h
R
ip
p
le
s

0%/1000x 100%/1x 24%/2x 51%/2x 86%/3x

Z
ig
za
g

w
it
h
R
ip
p
le
s

0%/1000x 100%/1x 32%/1x 52%/1x 88%/1x

Figure 5.5: Selected result images for 6 shaders on an infinite plane. Reported below each
shader are L2 error and run-time relative to the naive no antialiasing baseline as in Figure 5.1.
Please zoom in to see aliasing and noise patterns in the different methods. Program variants
with comparable time were selected: see Section 5.7.1 for more details. Note that the amount
of aliasing and error for our result is significantly less than Dorn et al. [35]. We typically have
significantly less error and noise than the comparable supersampled results. Please zoom in
to see details.
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Table 5.2: A table of our 21 shaders. At the top, we list our 7 base shaders, which are each
combined with 3 different choices for parallax mapping, listed at the bottom. We also report
the number of non-comment lines and expressions in each program fragment.

Shader Lines Exprs Description
Base shaders

Bricks 38 192 Bricks with noise pattern
Checkerboard 20 103 Greyscale checkerboard
Circles 16 53 Tiled greyscale circles
Color circles 26 164 Aperiodic colored circles
Fire 49 589 Animating faux fire
Quadratic sine 26 166 Animating sine of quadratic
Zigzag 24 224 Colorful zigzag pattern

Parallax mappings
None 0 0 No parallax mapping
Bumps 21 203 Spherical bumps
Ripples 23 178 Animating ripples
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Figure 5.6: Time versus error plots for the 21 shaders defined in this the paper, and applied
to planar geometry. Here we show the Pareto frontier of program variants that optimally
trade off running time and L2 error. We show results for our method, Dorn et al. [35],
supersampling with varying numbers of samples, and the input shader without antialiasing.
Note that our approach typically has significantly less error than Dorn et al. [35] and is
frequently an order of magnitude faster than supersampling for comparable error.
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We evaluate on an Intel Core i7 6950X 3 GHz (Broadwell), with 10 physical cores (20

hyperthreaded), and 64 GB DDR4-2400 RAM. All shaders are evaluated on the CPU using

parallelization. The tuning of each shader took between 1 and 6 hours of wall clock time, with

1 to 3 hours for planar geometry. However, we note that good program variants are typically

available after minutes to low tens of minutes, and most of the remaining tuning time is

spent making slight improvements to the best individuals. Please see Section 5.7.3 for results

available after tuning for 10 minutes. Also, our tuner is intentionally a research prototype

that is not particularly optimized: it could be significantly faster if the code generator were

optimized, it was parallelized more effectively, cached more redundant computations, or

targeted the GPU. We found that getting the code generation and math details right was

challenging, so we only target CPU code for simplicity in our prototype.

5.7.1 Planar Geometry

We first evaluate shaders on an infinite plane. Figure 5.1 and 5.5 show 7 of our shaders,

including one result for each base shader. The result for our method is selected by a human

choosing for each shader a program variant that has a sufficiently low error. Dorn et al. [35]

typically cannot reach sufficiently low errors to remove the aliasing, so we simply select the

program variant from Dorn et al. that reaches the lowest error. The supersampling result is

selected such that its runtime is the most similar to ours. Note for supersampling, the times

relative to no antialiasing do not exactly match the sample count due to cache effects and

variations in the running time depending on exactly where samples intersect geometry.

Figure 5.6 presents the time versus error plots for the Pareto frontiers associated with all

21 shaders. Note that Dorn et al. typically has a significantly higher error, which manifests

in noticeable aliasing. Also, note that the supersampling method frequently takes an order

of magnitude more time for equal error.

Statistics for the approximations used are presented in Table 5.3. Note that a rich variety

of approximation strategies are used: all approximation choices are selected for different
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Table 5.3: Statistics of which approximations were chosen for different shaders on an infinite
plane. We show statistics for the 7 program variants for the shaders presented in Figure 5.1
and Figure 5.5. We also show aggregate statistics over all 21 shaders, with each shader’s
contribution weighted equally. We report aggregate statistics from the entire Pareto frontier,
as well as for each shader choosing only the slowest, fastest, or median speed program variant.
Our results show that a rich variety of our different approximation rules are needed for the
best performance.

Shader Dorn et al. Adaptive Monte Carlo None
[35] Gaussian Sampling

Bricks w/ None 28% 0% 30% 29%
Checkerboard w/ Ripples 66% 34% 0% 1%

Circles w/ None 4% 21% 71% 4%
Color Circles w/ Bumps 8% 47% 44% 0%

Fire w/ Bumps 1% 7% 33% 60%
Quadratic sine w/ Ripples 13% 80% 0% 8%

Zigzag w/ Ripples 0% 91% 1% 8%
All shaders (Pareto frontier) 29% 15% 25% 30%

All shaders (fastest time) 13% 10% 0% 77%
All shaders (median time) 20% 19% 49% 13%
All shaders (slowest time) 10% 27% 49% 14%

programs (compactly supported kernel is only applied to functions with singularities, and

is therefore not part of the search). Adaptive Gaussian and Monte Carlo sampling are

important for high accuracy but less so for fast running time, as indicated in the bottom

row of Table 5.3. In contrast, the Dorn et al. approximation is mainly useful when a fast

running time is desired in exchange for higher error. For the correlation term discussed

in Section 5.4.2.1, nearly all approximations for programs on the Pareto frontier prefer the

simple choice of ρ = 0 when aggregated across all 21 shaders. Assuming equal weight for

each shader, we find 87% of program variants prefer ρ = 0, whereas only 4% use ρ as a

constant, and 6% use ρ estimated based on the affine assumption. We conclude that for

shader programs, the simple choice of ρ = 0 in most cases suffices.

Note that our brick shader (shown in Figure 5.1) gives poor results for the method

of Dorn et al. [35], while in their paper, a brick shader with a similar appearance shows

good results. This is because their brick shader is implemented such that the tiling can be
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bandlimited independently, while our implementation intentionally uses the more challenging

function fract() to exercise our compiler.

5.7.2 Evaluation for Curved Geometry

This section evaluates shaders on two curved geometries: sphere and hyperboloid. Variables

such as surface normal have more complicated distributions on curved geometries, while in

planar geometry (Section 5.7.1), they are just constants. Because of this, shaders are tuned

separately on each of the geometries.

Results for 7 of the shaders are presented in Figure 5.7, including one result for each base

shader. The program variant shown in the result is chosen similarly as in Section 5.7.1.

5.7.3 Short Tuning

Figure 5.8 shows 5 results for short tuning where each shader is only tuned only for a limited

time. Specifically, we report the first available result at the end of a generation after the

tuner has run for 10 minutes. We compare the results of short tuning with full tuning:

the tuner is run by default for 20 generations. Similarly, our short tuning result shown in

Figure 5.8 is chosen with sufficiently low error.

5.8 Summary and Discussion

This chapter proposes a general compiler framework that smoothes an arbitrary program

over the floats by approximating its convolution with a Gaussian kernel. We present sev-

eral different approximations with different accuracy and efficiency trade-offs. We apply

the framework to automatically bandlimit procedural shader programs and demonstrate our

framework has substantially better error than Dorn et al. [35] even after our improvements,

and is frequently an order of magnitude faster than supersampling. While this chapter focuses

on the application of procedural shaders, the proposed smoothing framework is indeed gen-

185



Ground Truth No Antialiasing Our Result Dorn et al. 2015 Supersampling

B
ri
ck
s

w
it
h
N
on

e
H
y
p
er
b
o
lo
id

0%/1000x 100%/1x 29%/1x 95%/1x 93%/2x

C
h
ec
ke
rb
oa

rd
w
it
h
N
on

e
H
y
p
er
b
ol
oi
d

0%/1000x 100%/1x 37%/3x 68%/3x 101%/2x

C
ir
cl
es

w
it
h
R
ip
p
le
s

S
p
h
er
e

0%/1000x 100%/1x 28%/7x 89%/2x 49%/8x

C
ol
or

C
ir
cl
es

w
it
h
N
on

e
S
p
h
er
e

0%/1000x 100%/1x 25%/3x 32%/3x 75%/4x

F
ir
e

w
it
h
B
u
m
p
s

on
S
p
h
er
e

0%/1000x 100%/1x 46%/8x 86%/6x 46%/8x

Q
u
a
d
ra
ti
c
S
in
e

w
it
h
R
ip
p
le
s

o
n
S
p
h
er
e

0%/1000x 100%/1x 37%/4x 62%/7x 65%/5x

Z
ig
za
g

w
it
h
N
on

e
o
n
H
y
p
er
b
ol
oi
d

0%/1000x 100%/1x 26%/1x 53%/1x 102%/2x

Figure 5.7: Selected result images for 7 shaders on curved geometries. Reported below each
shader are L2 error and run-time relative to no antialiasing as in Figure 5.1. Please zoom in
to see details.
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Figure 5.8: Results for short tuning. Shaders are tuned for about 10 minutes (“Our Short
Tuning”) and compared to tuning for 20 generations (“Our Full Tuning”). Note that many
aliasing patterns can be reduced after short tuning. Please zoom in to see details.
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eral, and we believe it could be useful for other problems in graphics, mathematics, and other

disciplines. Our source code is available at https://github.com/yyuting/approximate_

program_smoothing.

The proposed framework still has several limitations, which invite future exploration.

First, our smoothing result may contain small amounts of residual aliasing or biases when

the Gaussian distribution assumption is violated. Future work may extend to approxima-

tion rules with more general assumptions on the variable distribution. Second, for curved

geometries, highly aliased regions are rarely sampled because they usually occupy small pixel

regions in the rendering. This may cause the search algorithm biased toward areas with less

aliasing. This could be addressed by adaptive sampling strategies that favor more challenging

regions when preparing the ground truth. Finally, the exponential search space in our ge-

netic search limits our capability of generalizing to production shaders. Static approximation

choices are needed to scale to significantly more complicated shaders.
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Chapter 6

Learning from Program Traces

The frameworks described in Chapters 2 and 5 both utilize a set of compiler rules to de-

terministically mutate an input program to generate an output program that fulfills some

tasks, such as differentiating a discontinuous program, or smoothing a program. On the

other hand, deep learning methods are popular alternatives especially when the task cannot

be expressed programmatically, or when the program representation is expensive. Because

the network architecture is fixed during training, and only the model parameters are up-

dated, the deep learning approach are also referred to as “black box” proxies in contrast to

“white box” program representations.

Nevertheless, the network model itself being a “black box” does not mean the data

generation process is ignored entirely. In fact, a good deep-learning solution usually benefits

from observations of the underlying process. For example, understanding whether the task

is a global or local transformation helps design the network architecture, such as deciding

its receptive field and whether a skip connection is needed. Similarly, while deep learning in

graphics and vision typically uses color images as network inputs, they can also be augmented

by features such as depth or surface normals if the input image is generated from a traditional

rendering pipeline. These auxiliary features are typically manually picked based on domain

expertise and cannot be easily generalized to arbitrary applications or programs. However, a
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(a) Reference (b) Simplified Input

Venice: 1x speedup, 0% error 1400x speedup, 7.4x error

(c) RGBx Baseline (d) Our Result

1300x speedup, 1x error (baseline) 1300x speedup, 70% error

Figure 6.1: Learning to extrapolate from the partial computation of a procedural shader
called Venice. The reference solution (a) results from a full computation at 1000 samples
per pixel (spp). A simplified version of the shader provides an approximate solution (b) using
only 1 spp and less computation per sample (72% of the original compute; 1400x speedup
overall). Our RGBx baseline method (c) learns to approximate the reference well for much
of the image, based on only the RGB output of the simplified shader as well as a few hand-
picked auxiliary features – but exhibits artifacts in the distance (obvious in the zooms boxed
in green). This paper shows that difficult learning tasks like this can benefit from relying on
not just the RGBx features but also the program trace (a record of the intermediate values
computed at every pixel, in this case, that of the simplified shader) – producing a more
faithful approximation of the reference. Percent (%) denotes the mean perceptual error [158]
relative to that of the RGBx baseline, averaged over the test set.
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key property shared by these auxiliary features is that their input image is typically generated

by a program, and the program trace is usually a superset of the chosen auxiliary features.

Therefore, this chapter instead explores using the entire program trace to augment the deep

model’s input features.

Specifically, we collect the intermediate values computed at program execution, and these

data form the input to the learned model. We investigate this learning task for a variety of

applications: our model can learn to predict a low-noise output image from shader programs

that exhibit sampling noise; this model can also learn from a simplified shader program that

approximates the reference solution with less computation, as well as learn the output of

postprocessing filters like defocus blur and edge-aware sharpening. Finally, we show that the

idea of learning from program traces can even be applied to non-imagery simulations of flocks

of boids. Our experiments on a variety of shaders show quantitatively and qualitatively that

models learned from program traces outperform baseline models learned from RGB color

augmented with hand-picked shader-specific features like normals, depth, and diffuse and

specular color. We also conduct a series of analyses that show certain features are important

within the trace: these coincide with intuitively important aspects of the program. The

important features can help select a good subset of trace features for learning, and even

learning from a small subset of the trace already outperforms the baselines. We finally

show that multiple shaders can be learned together with a shared denoising network and a

lightweight shader-specific encoder.

6.1 Overview

Deep learning applications in graphics and vision typically work on images encoded as pixels

in RGB color space. For images with 3D scenes, researchers have also explored augmenting

the RGB data with hand-picked features like depth or surface normals [21, 132]. These
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auxiliary features are picked based on domain expertise, and vary for different applications

or programs.

This chapter instead proposes augmenting the data from which a neural network learns

with the program trace. In software engineering, a trace refers to the record of all states that

a program visits during its execution [42, 66], including all instructions and data. We explore

this idea in the context of procedural shader programs, like the one shown in Figure 6.1.

The sequence of instructions tends to be similar from pixel to pixel, so we rely on just the

intermediate values for learning, referring to these as the “program trace.”

Shader programs can be used to flexibly construct complex and even fantastical ap-

pearances by combining sequences of mathematical operations to create texture patterns,

produce lighting, perturb surface normals to produce effects such as bump mapping, apply

noise functions, or determine ray intersections with procedurally generated geometry [4]. A

range of example shaders may be seen throughout this paper; many more examples are avail-

able from websites such as shadertoy.com. Note that while the example shaders appearing

here are simpler than those typical of production or games, they embody the key features

that appear in production-level shaders.

Since the fragment shader program operates independently per pixel, we can consider

the full program trace as a vector of values computed at each pixel – a generalization from

simple RGB. Since there are many pixels (program traces) per image, and potentially many

computed images, this provides a rich source of data from which to learn. Graphics and

vision researchers have explored learning algorithms for input-output image pairs with a few

auxiliary feature buffers, such as those of Vogels et al. [132] on removing sampling noise,

and Xie et al. [146] on fluid super-resolution. Such features are manually identified by an

expert on a per-shader basis. Moreover, the extent to which these auxiliary features help

learning depends on the choice of features, the particular shader, and the learning goal. We

believe other shader-specific information useful to the learner remains hidden within the pro-

gram execution, and that a learning process could automatically identify and leverage that
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Figure 6.2: Four-application summary: denoising, reconstruction from simplified shaders,
learned post-processing effects, and simulation. The vertical axis shows (in every example)
improved perceptual error compared to each application’s strongest baseline: RGBx for
denoising, simplified, and post; and I/O for simulation (Section 6.5). Hatching directions
denote the use of simplified shaders and/or temporally coherent models.

information. Thus, we propose a learning-based approach that utilizes all of the informa-

tion produced during the execution of a shader program. The learner could automatically

identify which features are useful, obviating the need for manual feature selection amid an

experimental process.

Intuitively, learning tasks that extrapolate from a partial computation to predict the

result of a full computation may benefit from learning from program traces. To illustrate its

applicability, we introduce four applications. Three of them work from pixel data: learning

to predict low-noise output, learning to reconstruct full computation from a program with

partial computation, and learning the output of a postprocessing filter. The fourth appli-

cation shows that the idea of learning from program traces can be applied to non-imagery

data: it learns to simulate the position and velocity of a flock of “boids” [113], which emu-

late flocking behavior similar to that of birds or fish. The performance of these applications

is summarized in Figure 6.2. In most of our experiments, we train a separate model for
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each shader on each application. Scene-specific learning is commonly used in recent work on

novel view synthesis [122, 128, 129, 82]. Section 6.6.3 describes how a single network can be

trained over multiple shaders.

The primary contribution of this chapter is the idea that a shader program trace can

be used as a feature vector for machine learning. Nevertheless, it is neither obvious how to

use such a feature, nor that it would help in any particular application. Thus, a secondary

contribution is to introduce a framework for learning from program traces, and demonstrate

that it outperforms baseline methods in several applications. The third contribution is to

investigate the relative importance of individual trace features, and how the input trace size

across various trace subsampling strategies can affect the performance of the model. Our

code is available at: https://github.com/yyuting/learning_from_program_trace.

6.2 Related Work

Program traces in machine learning. Program traces have proven helpful in malware

detection [25], program induction [112], and program synthesis [28, 58]. Researchers have

also explored using partial execution or partial rendering to synthesize graphics programs [45]

or infer parameters for procedural models [114]. Instead of developing specialized learning

models for a particular application, we explore a generic architecture that can learn over a

range of applications. Nevertheless, this work focuses on learning from program traces for

shaders, which enjoy certain unique properties such as an emphasis on pixel outputs and an

enormous degree of parallelism. We also investigate network models and training schemes,

and analyze the importance of individual trace features, as well as the effectiveness of several

trace subsampling strategies.

Features for deep learning on imagery data. Researchers have explored a variety

of features beyond simple RGB as inputs to learned functions. Nalbach et al. [92] have

made a comprehensive exploration of such features as part of a deferred shading pipeline.
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Xie et al. [146] consider auxiliary features including flow velocity and vorticity when learning

density super-resolution for fluid simulation. Positional encoding [82] augments the input

by applying high-frequency functions to coordinate features, but does not benefit our tasks

(Section 6.5.7). To our knowledge, our paper is the first to propose augmenting such features

with the full program trace. The benefits are that the trace of a program that computes such

manually picked features inherently includes them, as well as other potentially useful infor-

mation; moreover, the extent to which various features are useful for a particular application

and shader are discovered automatically by the learning process.

Feature space reduction. In deep networks, an overly large feature space can exhaust

memory, increase training time, or even make learning tasks harder. Researchers have ex-

plored methods to reduce the feature space by pruning whole convolutional filters [68, 77, 88].

In our method, we focus mostly on reducing the input feature space because the dimension

of the program trace can be large. We use a method similar to that of Molchanov et al. [87]

to evaluate the importance of each trace input and show a trade-off between the runtime

and visual fidelity as we change our feature reduction strategies. Our experimental results

suggest that without prior execution or learning, we could find no subsampling strategy that

consistently outperforms a simple uniform subsampling. However, if the shader is allowed

the overhead of learning a model over the full program trace, we can select important trace

features from the learned model.

Remove sampling noise. One of our applications addresses Monte Carlo noise reduction

in low-budget rendering. One strategy for low-noise rendering involved carefully distributing

the samples, see Zwicker et al. [160] for a survey. Another method uses symbolic compilation

techniques to analytically approximate the integral that produces the smoothed shader [35,

148], but is hard to scale to complicated shaders such as the one shown in Figure 6.1. On

the other hand, learning-based algorithms train regressors such as neural networks to predict

the rendering. The input to networks is usually augmented with auxiliary features [21, 132,
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48]. Unlike previous work, our approach gathers customized information per shader, and is

orthogonal to learning-based denoising network design in the sense that it can be combined

with an existing network.

Shader simplification. As the complexity of the shader program grows, it is common to

apply lossy optimization to obtain programs that only approximate the original program but

with better runtime performance [54, 121, 133]. We show experiments that explore how the

trace from the simplified programs can provide information that helps to recover the missing

details in the target shader. Thies et al. [128] identify a similar task where they learn novel

view synthesis from a coarse proxy geometry. (The Venice example shown in Figure 6.1 is

particularly reminiscent of that work.) Nevertheless, to our knowledge this is the first paper

to propose the application of learning from a simplified shader program to restore details in

the original program; and we show that using the program trace can help in this application.

Neural networks for image processing. Researchers have investigated a variety of

learning-based methods for image processing tasks, such as image enhancement and filter-

ing [47, 70, 72, 144]. Our postprocessing application demonstrates that the proposed method

is also helpful when learning these imagery operations as postprocessing filters.

Learning simulation programs. High-quality simulation usually executes the program

over many tiny time steps, which is expensive. Researchers have developed reinforcement

learning-based methods [52, 62] to replace the program entirely, or execute the program at

a lower spatial resolution and learn a super-resolution model [136]. Our approach instead

learns from the program’s execution trace on a larger time step, and corrects the output as

if the program is executed for multiple smaller steps.
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6.3 Compiler and Preprocessing

This section introduces a compiler that can collect traces from shader programs. It translates

shader programs from a domain specific language to TensorFlow code that logs the trace

(Section 6.3.1). To stay within the hardware memory budget, the compiler also restricts the

trace length to an arbitrary size cap (Section 6.3.2). Collected program traces are further

preprocessed before learning (Section 6.3.3). Section 6.4 describes the learning process in

detail.

6.3.1 Compiler and Program Traces

Our compiler takes as input an arbitrary procedural shader program written in a domain

specific language (DSL) and translates it to a TensorFlow (TF) program that outputs a

rendered image as well as a collected program trace. We embed the DSL in Python, which

allows us to use Pythonic features such as operator overloading. We also include common

shader operations such as trigonometric functions, dot, and cross products. For simplicity,

we assume the shader program manipulates numerical scalars or vectors of known size. We

handle branching by computing both branches of conditionals. Likewise, loops are unrolled

to the maximum possible number of iterations: this limit is set by the programmer for each

loop. These are not fundamental limitations of the approach, as we experimented with

emulating branching and variable-length loops by writing dummy values of zero to traces in

the branch/iteration not executed, and this gives visually and quantitatively identical results

to our current approaches (Section 6.5.6). These policies permit us to express the trace of

any shader as a fixed-length vector of the computed scalar values, regardless of the pixel

location.
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6.3.2 Feature Vector Reduction

Large program traces can produce unnecessarily large feature vectors from which learning

becomes unwieldy, or worse, exhausts memory. Loop unrolling is a common contributor to

large traces, because the program trace would be scaled by the number of iterations. The

remainder of this section describes several strategies for reducing the size of the feature

vector. All these strategies described in this section can be reused when targeting a different

language, e.g. OpenGL Shading Language (GLSL) or CUDA.

Compiler optimizations. Since such features would be redundant in the learning net-

work, the compiler omits constant values, duplicate nodes in the compute graph, and neigh-

boring nodes that differ only by a constant addition or multiplication. The compiler also

identifies common built-in functions and iterative improvement loops to eliminate highly

correlated trace features.

Built-in functions (e.g., sin) should typically be treated as a black box. Our DSL provides

widely used shader operations such as noise functions and a normal computation functor.

The compiler logs only the return values of such built-in functions, not the intermediate

values found when computing them. This is a natural choice since in principle one could

trace down to a very low level such as including details about the microarchitecture, but we

believe that learning will gain the most benefit if it occurs at a similar abstraction level as

used by the programmer.

An iterative improvement loop repeatedly improves an approximate result to obtain

a more accurate result [119]. A commonly used iterative improvement pattern in shader

prototyping is a ray marching loop that computes the distance from the camera to objects

in the scene. Because each iteration computes a more accurate approximation than the

previous iterations, the final iteration is the most informative. Therefore, the compiler will

only log the trace from the final iteration of such loops. We automatically handle common

cases of iterative improvement loops found in shaders by classifying loops based on pattern

198



matching: the output of the loop is either iterative additive or can be written as a parametric

form of the iterative additive variable, formally defined in Definition 19. For a loop variable

X at iteration n, we will denote its value as Xn

Definition 16 A loop variable X is iterative additive if it matches the following pattern or

its equivalent forms:

Xn = Xn−1 + Z (6.1)

Here Z can be any arbitrary variable.

Definition 17 A variable Y is dependent on an iterative additive variable X if it matches

the following pattern or its equivalent forms:

Yn = select(cond, Yn−1, f(Xn, Xn−1, C)) (6.2)

Here, cond is an arbitrary Boolean variable, f is an arbitrary function, and C is a variable

computed outside the loop, i.e. C can be viewed as constant inside the loop.

Definition 18 A loop variable X is an output variable if for any iteration n, its value Xn

is used outside the loop.

Definition 19 A loop is classified as an iterative improvement loop if all of its output vari-

ables are either iterative additive or are dependent on an iterative additive variable.

We also investigate several other strategies inspired by previous work on loop perfora-

tion [119] and image perforation [75]. In our case, however, we always run the full compu-

tation, but simply select a subset of those computations as input to the learning task, as

follows.
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Uniform feature subsampling. The most straightforward strategy is to subsample the

vector by some factor n, retaining only every nth trace feature as ordered in a depth-first

traversal of the compute graph. This approach tends to work well in our experiments, and

we speculate that it does so because nearby nodes in the compute graph tend to be related

by simple computations and thus are redundant.

Other sampling schemes. We explored a variety of other schemes to reduce the feature

vector length, including “clustering” based on statistical correlation, “loop subsampling” that

logs features from every kth loop execution; “first or last” which only collects features from

either the first or last iteration of a loop; and “mean and variance” summarize the statistics of

a variable over all loop iterations. Yet none outperformed the above straightforward scheme

consistently enough to justify their use in our subsequent experiments.

These options are combined as follows. We first apply compiler optimizations, then

subsample the features with a subsampling rate that makes the trace length most similar to

a fixed target length. For all experiments, we target a length of 200, except where specifically

noted such as in the simulation example. After compiling and executing the shader, we have

for every pixel: a vector of dimension N : the number of recorded intermediate values in the

trace.

6.3.3 Whitening the Collected Trace

We preprocess the traces to rescale the data to a fixed range. Intermediate values in computed

shader programs can vary over a large range: resulting in values such as 1030, ±∞, or not a

number (NaN), even when most values of this shader computation remain near zero. This can

happen, for instance, near object silhouettes where textures have a high frequency in image

space. The extreme values could cause a standard whitening technique to fail entirely, due

to say undefined mean or standard deviation where values such as ±∞ or NaN are present.

Even if only finite trace values are observed at training time, standard whitening may focus
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too much on extreme values such as 1030, resulting in meaningful data (e.g. between [−1, 1])

being mapped to a very small range, and at test time, extreme values such as ±∞ or NaN

can still produce non-finite floating point values that are problematic for inference.

We thus develop a whitening method for shader program traces. We first clamp extreme

values by collecting the statistics for the intermediate values’ distribution at training time.

For each intermediate value, we first decide whether its distribution merits clamping. If we

detect that the distribution has only a small number of finite, discrete values (10 or fewer),

we do not apply clamping to the corresponding intermediate value. For the rest of the

intermediate values, we first discard infinite values and then find from their distributions the

lowest and the highest pth percentiles, denoted P0 and P1, and use these to compute clamping

thresholds. Next, we clamp all values to the range [P0 − γ(P1 −P0), P1 + γ(P1 −P0)]. We

also set NaN values to the low end of this range. Empirically, we found in our experiments

that p = 5 and γ = 2 work well, and we use these values for all results. Finally, for each

intermediate feature, we rescale the clamped values to the fixed range [-1,1], and record the

corresponding scale and bias used. In both training and testing, the collected program traces

are used directly by applying the same precomputed scale and bias, but the values will be

clamped to the range [-2, 2] to allow data extrapolation.

We evaluated the effectiveness of scaling and clamping on the denoising task (Sec-

tion 6.5.1) with Mandelbrot. If trained without clamping, the model will diverge to NaN

even before the first iteration finishes, while training without whitening results in 12x worse

perceptual error compared to our full method. These results indicate that our data prepro-

cessing is essential in our pipeline.

6.4 Network Architecture and Training Details

This section briefly summarizes the training details in our experiments. For all of our imagery

applications, we selected a basic architecture described in Section 6.4.1. Nevertheless, our
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1 2 4 8 1

Program trace Output1x1 conv (& feature reduction)
D 3x3 conv (& dilation D)

1x1 conv

N 48 3 (RGB)K

Figure 6.3: Network architecture used in our experiments. The input from the program
trace has N channels. The output layer has three channels for color images. The first
feature reduction layer has K channels. We use K = 48 in our method. When training the
baseline method, K will be increased to a larger value to match the total number of trainable
weights to be the same as training with the program trace at the maximum length. All other
intermediate layers have 48 channels. The input feature maps are first analyzed by four 1x1
convolutional layers, followed by five 3x3 convolutional layers with dilation rates of 1, 2, 4, 8, 1
respectively. Finally, four additional 1x1 convolutional layers are applied and output a three-
channel image. Note that the first and last convolutional blocks indicated in lighter blue
each reduce the number of channels (from N to 48, and from 48 to 3, respectively).

method could be coupled with any deep learning architecture. This section thus serves as

an example of how to select a network architecture and carry out training.

6.4.1 Network Architecture

Our experiments use a dilated convolutional neural network depicted in Figure 6.3, similar

to that of Chen et al. [26]. This network architecture is used directly in our denoising

(Section 6.5.1) and post-processing (Section 6.5.3) applications, and also serves as a generator

model in other applications and scenarios, each of which relies on a GAN model: conditional

spatial GAN [57] for learning from a simplified shader (Section 6.5.2) and temporal GAN

[134] for learning temporally coherent sequences (Section 6.5.4). We prefer to keep a single

network architecture for consistency and ease of experimentation across all applications

except boids, to demonstrate our core idea of learning from shader program traces is beneficial

across many applications, although more specialized architectures could be beneficial for

certain applications like denoising (e.g. [48]). Details about the GAN models are discussed
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in Section 6.4.3. The boids simulation relies on a fully-connected architecture described in

Section 6.5.5.

6.4.2 Loss Functions

We use a combination of pixel-wise color loss Lc and perceptual similarity loss Lp to encourage

network output to be similar to the ground truth during training: Lb = Lc + αLp. The

parameter α is a weight that balances between the color and perceptual loss terms. We fix

α = 0.04 for all of our experiments. This value was chosen to roughly balance the magnitude

of the gradients due to Lc and Lp during back-propagation. The color term Lc is simply

the standard L2 loss on the RGB image. The other loss term Lp uses the learned image

perceptual dissimilarity metric of Zhang et al. [158]. This section describes the basic loss Lb

used in training. Additional details about the GAN losses can be found in Section 6.4.3, and

the loss used in the boids simulation is described in Section 6.5.5.

6.4.3 Details for GAN Models

Our spatial GAN model is a conditional GAN, where the conditional labels are the RGB

channels of the 1 spp rendering from the shader program, denoted as cx. Because cx is already

part of the program trace, we directly use the model from Figure 6.3 as our generator, and

the generator’s output is naturally conditioned on cx. We then train the model to match the

ground truth denoted as cy. Additionally, we used a patchGAN architecture similar to that

of Isola et al. [57] with receptive field 34×34 as our discriminator D.

Our temporal GAN model uses a similar architecture as the spatial GAN with modifica-

tions following [134]. The generator is conditioned on imagery from three consecutive frames:

the current predicted frame and the two previous ones. This involves five 3-channel images

as conditional labels: shader RGB output from all three frames plus the generator’s output

from the two previous frames. Because neither the shader output nor the generator output

from the previous two frames is part of the program trace for the current frame, we modified
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the generator architecture in Figure 6.3 to concatenate the additional four conditional label

images after the feature reduction layer. The rest of the architecture remains unchanged.

We use the same discriminator architecture as for our spatial GAN, but it takes an input of

sequences of frames and their corresponding conditional labels.

We now introduce the variation on the basic loss function that incorporates the GAN loss.

First, we add GAN loss for some applications (the simplified shaders of Section 6.5.2 and the

temporally coherent sequences of Section 6.5.4). We use a modified cross-entropy loss [49]

for both spatial and temporal GAN models. Our spatial GAN model is conditioned on the

RGB channels of the shader program cx to approximate the distribution of the ground truth

cy, while our temporal GAN loss is applied to sequences c̃x and c̃y. The training objective

(that we minimize) for generator LG and loss for spatial discriminator LDS
can be expressed

as:

LG = Lb − β Ecx log(DS(G(cx), cx))

LDS
= − Ecx,cy log(DS(cy, cx))

− Ecx log(1 −DS(G(cx), cx))

(6.3)

Similarly, the training objective on temporal sequences for generator LG and temporal dis-

criminator LDT
can be expressed as:

LG = Lb − β Ec̃x log(DT (G(c̃x), c̃x))

LDT
= − Ec̃x,c̃y log(DT (c̃y, c̃x))

− Ec̃x log(1 −DT (G(c̃x), c̃x))

(6.4)

The parameter β is a weight that balances between the GAN loss and the regular color and

perceptual loss. In all our experiments with GAN loss, we fix β = 0.05 to roughly balance
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the magnitude of gradients from all loss terms. Note in Equation 6.4 we did not include

spatial discriminators for simplicity. But it is possible to combine both Equation 6.3 and

Equation 6.4. For example, in Section 6.5.4, we trained both discriminators to produce a

temporally coherent model for simplified shaders.

We also skip the back-propagation on the GAN loss for any mini-batch with constant

color to avoid training instability.

6.4.4 Generating the Dataset

Our experiments generate the dataset from 800 images for training, 80 images for validation,

and 30 images for testing (each 960×640). Although this training set size is small relative to

typical deep-learning tasks, we address this concern in Section 6.4.5. The training images are

generated with random camera poses, while testing images are divided into two groups: 20

similar distance images with camera pose sampled from the same distribution as the training

set, as well as 10 different distance images that are closer or farther than the training set. For

some shaders, (Trippy Heart, Mandelbrot, Mandel-bulb, Venice and Oceanic), a periodic time

parameter also changes the shader appearance, which is sampled from the same distribution

for both training and testing datasets.

We find it beneficial to further divide the training and validation set into tiles. One

advantage is that certain features in the shader may be visually salient to humans, so we can

emphasize such features to ensure they are learned well. In principle, this could be accom-

plished with automatic saliency models (e.g. [64, 19, 30]). However, off-the-shelf saliency

models are trained for natural imagery whereas our shaders are non-photorealistic, and

therefore we combine both a saliency model [30] and a traditional Laplacian pyramid repre-

sentation to robustly and automatically select salient tiles. Another benefit of tiled training

is that it reduces memory, and it also accelerates convergence, because we can use larger

mini-batches with more varied content within the same GPU memory to obtain a gradient

estimator with a lower mean squared error.
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We sample training and validation tiles as follows. We first generate saliency maps for

each of our 800 training images and 80 validation images using Cornia et al. [30]. Saliency

models usually incorporate a center bias that tends to give lower saliency scores to pixels

closer to image boundaries. This behavior is not ideal for our framework because our training

images are generated from randomly sampled camera poses so that salient content could

appear anywhere in the image. Therefore, we run the saliency model on images with an

extended field of view (each 1280×960) where the center patches of size 960×640 are our

original training images. This allows every pixel in the original training dataset to be away

from image boundaries to avoid center bias in the resulting saliency maps.

We then subdivide each of the training and validation images into six 320×320 tiles. For

each tile, we estimate its intensity on low, middle, and high frequencies by taking the average

over its first, third, and fifth level of the Laplacian pyramid [18]. Together with the average

saliency score, these four metrics can be combined to robustly sample salient and interesting

tiles for learning.

Next, we use identical sampling rules to sample one-quarter of the sampling budget from

each of the four metrics. For each metric, we rank the tiles according to their associated

score and only sample from the tiles whose score is within the top 25% nonzero scores. The

score of the qualified tiles will further be normalized to [0, 1], and each tile will be sampled

with a probability proportional to the normalized score.

Apart from the rules described above, we find it helpful to also include a small portion of

constant color tiles in the training dataset, e.g. the black background in Bricks Figure 6.4.

These uninformative and constant color tiles can be easily selected from a low color variance

threshold. Although some salient tiles already contain both informative and uninformative

regions, they are usually close to object silhouettes and could still pose challenges when

extrapolating to uninformative regions far away from the object. This is because the trace

can vary greatly at different noninformative regions (e.g. if the pixel is not hitting any object,

its negative distance to objects can still vary by a lot).
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We sample a total of 1200 tiles for training and 120 tiles for validation. If the shader does

not contain constant color tiles, all of the sampling budgets will be used to equally sample

from the 4 saliency metrics described above. Otherwise, only 95% of the sampling budget

will be sampled from saliency, and another 5% will be sampled from low color variance tiles.

Testing still relies on 30 full images.

6.4.5 On the Fly Training

In training, we generate input program traces on the fly each time one is needed, rather than

loading pre-computed traces from the disk. There are two benefits to this approach. First,

precomputed traces are large, and it is typically faster to re-compute the trace, as opposed

to loading it from a disk. Second, each time a trace is generated, we use a new randomly

sampled sub-pixel location for evaluating the trace for any given pixel (a common strategy

to reduce aliasing). Therefore, the input traces will generally have different values in each

epoch even though we use the same ground truth solution. This approach helps the network

avoid overfitting.

6.5 Evaluation

This section describes experiments evaluating our method for various applications and sce-

narios: denoising pixel shaders (Section 6.5.1), learning to reconstruct simplified shaders

(Section 6.5.2), learning postprocessing effects (Section 6.5.3), and learning non-imagery

simulation programs (Section 6.5.5). We also discuss learning temporal coherence in Sec-

tion 6.5.4. The architecture and training scheme in these applications include fully connected

networks, traditional CNNs, and GANs, demonstrating our method’s wide applicability to

various deep learning models. We report LPIPS, SSIM, and PSNR for all applications in

Table 6.1, with a performance summary shown in Figure 6.2: in all cases, our method

outperforms the strongest baseline.
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For image processing applications, we choose a variety of challenging combinations of

shaders and geometries. The Bricks shader relies on simplex noise [106]. The Trippy Heart,

Mandelbrot, and Mandel-bulb shaders rely on iterative fractals. The shaders Mandel-bulb,

Gear, Oceanic, and Venice construct complex 3D procedural geometry rendered by ray

marching over a signed distance field [142]. The shaders Bricks and Venice extract con-

tents from texture maps. We adapted shaders Oceanic, Trippy Heart, Mandel-bulb, and

Venice from shaders with the same names at the website shadertoy.com, by the authors

Frankenburgh, Cras, EvilRyu, and reinder, respectively, while Gear is adapted from the shader

“primitives” by author Iq ; and the boids and fluid simulations described in Section 6.5.5 were

adapted from “Simple Boids” by Saduras and “Chimera’s Breath” by nimitz.

Our implementation is trained on a single GPU. For consistent timing in evaluation, we

use a 4-core Intel Xeon E5-2620 v4 2.10 GHz CPU with a single Nvidia GForce RTX 2080

Ti GPU across all models. During training, we always train 400 epochs for models without

a GAN and 800 epochs for models with a GAN. Timing results reported throughout appear

as speedup relative to ground truth. The actual shader runtime ranges from 30ms to 21s

with a median of 1.4s for full computation i.e. non-simplified shaders (Section 6.5.1 and

6.5.3), and from 20ms to 6s with a median of 80ms for partial computation (Section 6.5.2).

Inference time ranges from 70ms to 0.2s with a median of 90ms. These shaders are relatively

slow because they are implemented as computational graphs in TensorFlow. They could

be greatly accelerated through engineering a GLSL or CUDA implementation. Note the

shader’s runtime is invariant to whether program traces are collected or not, therefore it is

not a limitation to our proposed method. In all cases, we select the model at the epoch with

the lowest validation loss. For imagery learning tasks (Section 6.5.1, 6.5.2, 6.5.3), the model

trains on a dataset of 1200 tiles with 320×320 resolution, and 120 validation tiles in the same

resolution. Testing includes 30 full-size images with a resolution of 640 × 960. Please refer

to Section 6.4.4 for further details regarding our training. All experiments presented in this
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section are trained per shader. We also demonstrate in Section 6.6.3 that multiple shaders

can be trained together with a shared network and a lightweight shader-specific encoder.

Our strongest baseline is RGBx. It uses the same network and training as ours, but

with the input features consisting of RGB color plus manually picked auxiliary features

that are commonly used for learning with shader programs. We use normal, depth, diffuse,

and specular color whenever these terms are explicitly represented in the program. These

correspond to auxiliary features used in recent denoising papers [21, 132]. Because the

RGBx baseline generally has fewer input channels compared to our method, we increase

the number of channels in the first convolutional layer of the baseline model such that the

number of trainable weights matches that of our model. Unlike our automatic method, RGBx

requires additional manual expertise to pick auxiliary features for every shader program. An

automatic baseline that resembles ours would be RGB, which uses only RGB color without

any auxiliary features. However, RGBx always outperforms RGB, so we only compare with

RGBx.

6.5.1 Denoising Fragment Shaders

Here we describe the application of removing sampling noise. Our goal is to approximate

a low noise reference image collected using 1000 samples per pixel ( spp). Our method is

evaluated using 1 spp, drawn from a Gaussian spatial distribution with a standard deviation

of 0.3.

We evaluate our method and compare it against two baselines. The first baseline is

RGBx described before. Our second baseline is supersampling. Supersampling draws several

samples at each pixel, evaluates the shader to obtain RGB colors for each sample, and takes

the mean of the colors. We supersample by choosing a constant sample budget per pixel to

achieve approximately the same run time as ours, including the overhead for neural network

inference.
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(a) Reference (b) Our Result (c) Ref (d) Super (e) RGBx (f) Ours

Bricks 0%/1x 21x/1000x 1x/960x 68%/930x

Mandelbrot 0%/1x 15x/520x 1x/780x 24%/740x

Oceanic 0%/1x 11x/1000x 1x/1000x 83%/990x

Gear 0%/1x 17x/1000x 1x/980x 74%/960x

Figure 6.4: Learning to reduce sampling noise in procedural shaders. The reference low-
noise solution (a) relies on 1000 samples per pixel (spp). Our method (b) approximates
the reference well at only 1 spp. Zooming into the region boxed in green (c, f) reveals
approximation error, which compares favorably with the two baselines: (d) supersampling
(super) where the number of samples is chosen to have comparable run-time as ours, and (e)
RGBx. Errors and speedups are reported as in Figure 6.1. Our method better covers both
the orientation and high-frequency detail than the baselines. Bricks and Mandelbrot are
gamma corrected to emphasize visual differences. Sample counts chosen in supersampling
(d) are: 1 SPP (Bricks), 2 SPP (Mandelbrot), 1 SPP (Oceanic), and 1 SPP (Gear).

210



Table 6.1: Error statistics for applications in Sections 6.5 and 6.6.3. Errors reported as
LPIPS [158] / SSIM / PSNR.

Shader RGBx Ours
D

en
oi

si
n

g
Bricks 0.0141 / 0.981 / 36.68 0.0097 / 0.987 / 38.29
Gear 0.0173 / 0.986 / 38.90 0.0127 / 0.988 / 39.86
Mandelbrot 0.0235 / 0.973 / 36.07 0.0059 / 0.986 / 38.55
Mandel-bulb 0.0185 / 0.962 / 32.14 0.0118 / 0.975 / 34.18
Oceanic 0.0403 / 0.961 / 33.69 0.0339 / 0.966 / 34.51
Trippy Heart 0.0696 / 0.856 / 26.30 0.0543 / 0.886 / 27.27
Venice 0.0309 / 0.965 / 32.76 0.0242 / 0.973 / 33.83

S
im

p
li

fi
ed

Bricks 0.0624 / 0.922 / 25.57 0.0398 / 0.936 / 29.96
Mandelbrot 0.1111 / 0.826 / 27.04 0.0430 / 0.949 / 31.15
Mandel-bulb 0.0932 / 0.812 / 25.22 0.0600 / 0.856 / 26.85
Trippy Heart 0.2412 / 0.520 / 18.55 0.1824 / 0.629 / 20.95
Venice 0.0404 / 0.957 / 31.50 0.0285 / 0.965 / 32.72

P
os

t Blur 0.0126 / 0.978 / 35.81 0.0082 / 0.985 / 37.62
Sharpen 0.0881 / 0.833 / 24.26 0.0693 / 0.868 / 25.31
Simp Sharpen 0.2675 / 0.477 / 17.20 0.2154 / 0.587 / 19.35

S
h

ar
ed

Gear 0.0251 / 0.984 / 38.16 0.0173 / 0.986 / 38.66
Mandelbrot 0.0546 / 0.801 / 28.02 0.0165 / 0.933 / 32.60
Mandel-bulb 0.0423 / 0.861 / 28.02 0.0298 / 0.906 / 30.19
Trippy Heart 0.1048 / 0.815 / 19.99 0.0755 / 0.857 / 23.88

Training for 400 epochs typically takes between 6 and 32 hours. However, the Oceanic

shader is slower, and takes about 7 days to train. Note that all shaders are trained using

the same process over an identical architecture with a similar number of input channels;

therefore the great variation in training time derives primarily from the cost of sampling

from shader programs, not from learning.

In terms of the arithmetic average over all shaders, our method has a relative perceptual

error of 67% compared to the RGBx baseline. A different baseline, Supersampling, is con-

sistently worse than RGBx, with relative perceptual error ranging from 3x to 21x compared

to RGBx (Table 6.2). We believe the dramatic improvements in relative perceptual error

of our method over the baselines corresponds with the qualitatively better reconstruction of

high-frequency details that we observe in the renderings (Figure 6.4c-f).
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Table 6.2: Error statistics for denoising (Section 6.5.1) for our method and the supersampling
baseline. We report LPIPS perceptual error [158], SSIM, and PSNR. The numbers reported
are averaged across the entire test dataset. Our error metric is already reported in Table 6.1,
we include it here for a clear comparison with Supersampling. The error metric of the RGBx
baseline is also reported in Table 6.1 and is omitted here to save space. To enable a direct
comparison with RGBx, we additionally report for both ours and supersampling their LPIPS
perceptual error relative to that of the RGBx baseline (% or ×).

Shader Ours Supersampling
Bricks 0.0097(68%) / 0.987 / 38.29 0.2985( 21×) / 0.839 / 24.14
Gear 0.0127(73%) / 0.988 / 39.86 0.2935( 17×) / 0.880 / 24.71
Mandelbrot 0.0059(24%) / 0.986 / 38.55 0.3502( 15×) / 0.746 / 23.46
Mandel-bulb 0.0118(63%) / 0.975 / 34.18 0.1580(8.5×) / 0.895 / 23.98
Oceanic 0.0339(84%) / 0.966 / 34.51 0.4314( 11×) / 0.780 / 23.81
Trippy Heart 0.0543(77%) / 0.886 / 27.27 0.2178(3.1×) / 0.767 / 22.42
Venice 0.0242(78%) / 0.973 / 33.83 0.2893(9.4×) / 0.853 / 23.73

6.5.2 Reconstructing Simplified Shaders

We also explore a more challenging task: learning to reconstruct the appearance of a shader

from its simplified variant. Shader simplification is commonly used as a lossy optimization

that improves runtime while approximating the output of the original program. However,

simplified programs often lose texture or geometry detail as compared with the original. For

example, the simplified versions of Mandelbrot and Mandel-bulb shown in Figure 6.5d look

obviously different from their original counterparts in Figure 6.5c. We, therefore, propose an

application that learns to recover the denoised output of the original shader from the traces

of the simplified shader program sampled at 1 spp. To our knowledge, this paper is the first

to propose this learning task.

We use two different techniques to simplify the shader programs: genetic programming

simplification [121] (on Bricks) and loop perforation [119] (on all other shaders). Because the

model needs to synthesize unseen texture, we use a spatial discriminator for this application,

described in Section 6.4.3. Training for 800 epochs takes between 10 and 60 hours. Similar to

the denoising application, the great variation in training time mostly comes from generating
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(a) Reference (b) Our Result (c) Ref (d) Input (e) RGBx (f) Ours

Mandelbrot 0%/1x 4x/2400x 1x/1500x 38%/1300x

Mandel-bulb 0%/1x 3x/1800x 1x/1100x 64%/920x

Trippy Heart 0%/1x 3x/1600x 1x/340x 75%/270x

Figure 6.5: Learning from simplified shaders Mandelbrot, Mandel-bulb and Trippy Heart.
Errors and speedups are reported as in Figure 6.1. In Mandelbrot our method better recon-
structs missing regions due to oversimplification in the input. In Mandel-bulb our method
better recovers the orientation of the texture. In Trippy Heart ours correctly recovers the
color.

input samples from the shader. Our method has on average 62% perceptual error compared

to the RGBx baseline.

6.5.3 Postprocessing Filters

Our method can be useful for learning not only denoising, but also applying additional image-

space postprocessing filters. We implement two postprocessing filters on the CPU: an edge-

aware sharpening filter [101] and defocus blur [115]. The network learns simultaneously to

denoise and apply the postprocessing filter on the GPU. Figure 6.6 shows learning a defocus

blur filter on Mandel-bulb, and learning a sharpening filter on simplified Trippy Heart. Our
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(a) Reference (b) RGBx Baseline (c) Our Result

Mandel-bulb blur: 0%/1x 100%/700x (baseline) 65%/590x

Trippy simp sharpen: 0%/1x 100%/340x (baseline) 80%/270x

Figure 6.6: Learning postprocessing effects: defocusing blur for Mandel-bulb and sharpening
for Trippy Heart. The reference solution (a) shows the result of a postprocessing filter applied
to a low-noise shader rendering sampled at 1000 spp. Both RGBx baseline (b) and our
method (c) approximate the reference at 1 spp. Our method recovers more faithfully the
thin structure in Mandel-bulb and the color pattern in Trippy Heart. We report relative
perceptual error speedup as in Figure 6.1. Mandel-bulb is gamma corrected so it can be
viewed comfortably on darker displays.

Table 6.3: Error statistics for learning temporally coherent sequences. The metrics reported
are similar as in Table 6.1. The temporal application is trained both on shaders with full
computation and simplified shaders with partial computation (simp). For each experiment,
we generate a 30 frames sequence and compute the error with respect to ground truth using
the last frame. The reported numbers are averaged across 30 different sequences.

Shader RGBx Ours

Mandelbrot 0.0104 / 0.980 / 37.16 0.0037 / 0.989 / 39.75
Mandelbrot simp 0.1049 / 0.898 / 27.51 0.0693 / 0.929 / 28.93
Mandel-bulb 0.0213 / 0.959 / 32.06 0.0140 / 0.971 / 33.56
Mandel-bulb simp 0.1194 / 0.780 / 23.49 0.1035 / 0.788 / 24.25
Trippy Heart 0.0665 / 0.864 / 26.61 0.0546 / 0.884 / 27.17
Trippy Heart simp 0.2295 / 0.563 / 19.10 0.1788 / 0.637 / 21.10

approach reproduces the complex effect more faithfully, as compared to RGBx, and the

average relative perceptual error for ours is 74% of that of RGBx.
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(a) RGBx Baseline (b) Our result

Trippy Heart: 100% 77%

Figure 6.7: Learning temporally coherent sequences for Trippy Heart with the same ground
truth as in Figure 6.5. We report relative perceptual error compared to the RGBx baseline.
Both RGBx (a) and ours (b) are the 90th frame of a synthesized temporally coherent se-
quence. Note how our method generalizes well to long sequences whereas the RGBx baseline
presents obvious artifacts such as color residual from previous frames near the silhouette of
the heart.

6.5.4 Training Temporally Coherent Sequences

Temporal coherence in a graphics or vision context refers to there being a strong correlation

between each frame and the next. Training only on individual images can introduce temporal

incoherence for rendered video. One straightforward fix would be to apply a temporal filter

to the output sequences to blur out the noise. Alternatively, we implemented a temporal

discriminator to directly train temporally coherent sequences using a training scheme similar

to that of Wang et al. [134]. Each frame in a sequence is synthesized and conditioned on

two previous frames. In training, frames are synthesized in groups of six consecutive frames,

relying on eight-frame ground truth sequences to be able to bootstrap the initial frame.

We train temporally coherent sequences both for the task of denoising and learning from

simplified programs, and compare with an RGBx baseline as in Sections 6.5.1 & 6.5.2. A

summary of quantitative error is shown in Table 6.3. In all cases, ours outperforms the

RGBx baseline, and produces a more temporally coherent sequence than their non-temporal

counterparts (Sections 6.5.1 & 6.5.2) while retaining similar visual quality in still images.

We additionally verify that the temporal models generate more temporally stable sequences
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Ground Truth
I/O Baseline

Our Method

(a) Visualization (b) Error Analysis

Figure 6.8: (a) Visualization for flocks of boids. Both the I/O baseline (red) and our method
(blue) start from the same initial state and have taken 80 inference steps with step size 20.
Our mean position as well as flocking behavior is more faithful to the ground truth (green).
(b) We plot the average error as a function of step size, where training ranges from step size
20 to 64 (gray). Ours consistently outperforms both I/O and a more naive baseline, in the
training range and beyond it.

by computing the perceptual loss of 2 adjacent frames. For each of the 30 test sequences, we

use the last two frames of the length 30 sequence and average the score across ten renders

with different random seeds. We then average the score across the test dataset and compare

our temporal and our non-temporal models. In all cases, the temporal model has a lower

error between adjacent frames. The temporal models have 94% perceptual error relative to

the non-temporal models on average and 80% in the best case. Our supplementary video

does not present temporally coherent animation as a separate application, but rather shows

this training scheme in the denoising and simplification applications. Figure 6.7 shows an

example where our method generalizes better to longer sequences than the RGBx baseline.

Our result correctly learns both temporal coherence as well as the complicated structure in

each individual frame, whereas the RGBx baseline introduces additional color artifacts in

the output. The video shows even longer sequences (180 frames).
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6.5.5 Learning to Approximate Simulation

Departing from learning from procedural pixel shader programs, we also explore learning to

predict the future for shader programs that perform simulations. We study two simulations:

a flock of boids and a fluid simulation.

6.5.5.1 Boids Simulation

Our first example simulates a flock of “boids” [113] which emulate the flocking behavior of

birds or fish. Each boid has a 4-vector state representing 2D position and velocity. For a

flock of K boids, the simulation program takes the input of a K × 4 tensor that represents

each individual boid’s initial state, then updates the state based on repulsion and alignment

forces. The updated state then becomes the input to the next simulation step, and so forth.

The interaction between boids forms a complex flocking behavior that is difficult to predict.

We run the ground truth simulation using a small δ step size: 2 × 106 steps with δ = 1
600

s,

targeting 20δ per frame at 30fps. During training, we further augment the data by randomly

permuting boid indices. The learning task is to correct the simulation output from a larger

time step m · δ in order to approximate the boids’ states as if the simulation ran m times

for step size δ. (We train with m ∈ [20, 64].) We compare our method with two baselines: a

naive baseline that directly takes the larger step simulation without any correction, and an

input/output (I/O) baseline that uses the input and the output of the larger step simulation

as the input to a neural network.

The learning model is a combination of 1D convolution layers with 3 fully connected

layers. The input to the network has size B×N where B represents the number of boids (40

in our experiments) and N represents either the length of the program trace in our method

or 8 for the I/O baseline. We first reduce the dimensionality of the trace to K using a 1D

convolution with kernel size one, followed by 3 additional 1D convolutions with kernel size

one and 48 output channels. This is an analogy to the 2D feature reduction layer and 1x1

convolutions described in Figure 6.3, where K = 48 for our method and K = 1173 for the
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(a) Reference (b) I/O Baseline (c) Our Method

0% 100% 96%

Figure 6.9: An example of fluid simulation where our method (c) gives a very similar result
as the I/O baseline (b). This indicates our method may not be advantageous for simple
learning tasks where the baseline is already good enough to reconstruct the reference (a).
The relative perceptual error compared to the I/O baseline is reported below each image.

I/O baseline to match the number of trainable weights in both models. We then flatten

the B × 48 tensor as an input to a 3-layer fully connected network, where each layer has

256 hidden neurons, and an output fully connected layer with the number of neurons being

B · 4, representing the output state for each boid. For reported results, we use B = 40 and

log every program trace from the boids program. We choose a larger program trace length

than for the pixel shaders because the simulation considers all pairwise interactions between

boids, and a larger program trace budget better captures these interactions.

We learn a four-channel state (2D position and velocity) for each boid, rather than RGB.

Therefore we use only L2 loss on these coordinates after separately normalizing position and

velocity over the training set.

Figure 6.2 and 6.8 shows that ours always outperforms baselines numerically and visually,

even when the step size is extrapolated outside the training range (m ∈ [16, 128]). The

supplemental video shows that ours recovers individual boids’ interaction behaviors more

faithfully with a step size of m = 20, while the I/O baseline mainly learns the average

position and velocity for the entire flock but fails to recover a reasonable distance between

the boids.
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6.5.5.2 Fluid Simulation

Although our method is beneficial in all the previously described experiments, we also find

a null result for our second simulation example: a 2D fluid simulation. The state of the

simulation on a 2D grid can be viewed as a 7D feature: 3D for the RGB color of the fluid

and 4D for internal states: velocity, density, and vorticity. The simulation takes an input of

the 7-channel fluid state, solves the Navier-Stokes equation with a hard-coded external force

to compute the new internal state, then applies color advection on image space to output

the new 7D state. The color advection step controls the trade-off between how fast the fluid

propagates and how accurate the simulation is. We simulate with step size δ as the ground

truth. The learning task is to run the simulation at a coarser step 10δ, and predict the

intermediate states in between the 10 steps as if they were run at the fine scale simulation

with step size δ.

We use the same architecture as in Section 6.5.1 for this task and compare our method

with an I/O baseline that takes the initial and output fluid states as learning features.

While our method is marginally numerically better than the baseline (ours has 92% L2

error and 96% perceptual error compared to the baseline), the visual quality of the two

methods is almost identical. We hypothesize that this learning task is not suitable for our

method because it is relatively simple and lacks a complicated hidden state: the neural

network can easily approximate solving the Navier-Stocks equation given initial and output

states. Additionally, because the fluid states change slowly even after 10 simulation steps,

the network can easily hallucinate a reasonable correction using the initial state as a good

starting point, therefore, the baseline features already suffice. Figure 6.9 shows both the

baseline and our method can reasonably approximate the reference with almost identical

results.
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6.5.6 Branching and Loop Emulation

As discussed in Section 6.3.1, our compiler currently handles conditional execution by simply

evaluating both branches and unrolling loops to their maximum possible iteration. Variable-

length loops are handled using a user-given compile-time pragma specifying a ceiling on the

possible number of loop iterations: it is common to have such ceilings on iteration counts

in shader programs because of the need to maintain consistent shading performance. Values

from unused iterations are replaced with the values from the final computed iteration. We

made these choices because they are much easier to implement in TensorFlow. However,

in a practical application, shaders would typically be compiled to code that takes either

branch or exits the loop early based on a termination condition. Therefore, we experiment

to determine what would have been the effect of handling branches and loops the traditional

way. For branching, we simply wrote dummy values of zero to traces in the branch not

taken. We applied such branch emulation to a shader called Texture Maps which—similar

to aspects of Venice in Figure 6.1—uses a conditional statement to select a texture based

on whether a ray has hit a plane. For loops, we wrote zero values to traces after the loop

termination condition is met, and applied the emulation to Mandelbrot. In both cases, we

found that the emulation gives results that are visually and quantitatively identical to our

compiler’s implementation.

6.5.7 Comparison with Positional Encoding

Positional encoding [82] can be viewed as a general method to augment input to learning

that is agnostic to the input data’s generation process. It applies high-frequency functions

to positional features such as 3D coordinates. Because many shaders involve computing

intermediate values that vary spatially in ways that cannot easily be captured via positional

encoding, and some of them will be important to the learner, we believe our method offers an

improvement over positional encoding for most shaders and most applications. To evaluate

this hypothesis, we tested two applications (denoising in Section 6.5.1 and simplification
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in Section 6.5.2) × two shaders (Mandelbrot and Trippy Heart), adding explicit positional

encoding features as described by [82] to both the RGBx baseline and our method. On

average across the four cases, we found that the addition of positional encoding features did

not measurably change PSNR values. Moreover, the addition of positional encoding features

increased the perceptual error of both RGBx and ours by 4% on average. Therefore, we

verified our hypothesis that in the context of our applications and shaders, learning does not

benefit from positional encoding.

6.6 Trace Analysis

This section presents a series of analyses that help to understand how program traces are

beneficial for learning. We start by analyzing which trace features are contributing the most

to a learned model. Based on trace importance, we then investigate which subset of the trace

can be used for learning. We empirically find that if one cannot afford to first execute and

learn from the full shader trace, then the Uniform subsampling used throughout Section 6.5

always gives a reasonable performance, and we were not able to find any strategy that

consistently outperforms Uniform. However, if one can train an additional initial network

that first uses the full program trace, then we can do better than Uniform, using a strategy

that we call Oracle that selects important features. Finally, we show that multiple shaders

can be trained together with a shared denoising network and a lightweight shader-specific

encoder.

6.6.1 Which Trace Features Matter in a Learned Model?

We characterize the importance of the trace features by quantifying the change in training

loss when removing each of the trace inputs. Inspired by Molchanov et al. [87, 88], we used

the first-order Taylor expansion to approximate the importance of each input trace feature.

Specifically, for a model trained with loss L and trace length T , the importance score Θ of
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the input trace feature zl (l = 1, ..., T ) with image dimension M×N across K examples is:

Θ(zl) =
1

K

K∑
k=1

| 1

M ·N
M∑

m=1

N∑
n=1

∂L

∂zlm,n

· zlm,n| (6.5)

We evaluate Equation 6.5 on the denoising model for two shaders: Bricks and Mandelbrot.

Only a small fraction of the trace results in a very high importance score. We manually

inspect what the top 10% most important trace features represent and verified that the

learned importance corresponds to human intuition. For example in Bricks, we found the

most important traces include features that determine the distance to the nearest brick

edges and the Boolean condition that decides whether the pixel is inside the mortar: this

helps prevent edges from being broken. In Mandelbrot, we found the trace that controls

the complex number computation for almost every iteration is among the most important

features: a breakdown of such information at each level could help the model to better

denoise between nearby structures.

6.6.2 Which Subset of the Trace to Use for Learning?

As discussed in Section 6.3.2, program traces can be arbitrarily long, and we could input only

a subset of the trace for efficient learning and inference, such as the Uniform subsampling

used in Section 6.5. Therefore, a natural question to ask is: given a fixed input trace length

budget, what subsets of the program trace are good for learning? The best way to answer

this question is to enumerate all possible subsets of the program trace and train a separate

model for each. However, for a shader program that has T traces before subsampling and

a fixed input budget N , this strategy will introduce combinatoric
(T
N

)
learning tasks, which

are intractable.

To investigate how different subsets of the trace could practically affect learning, we

propose subsampling strategies we call Oracle and Opponent. Both the Oracle and Opponent

strategies are based on the feature importance score (Section 6.6.1) from a Full Trace model
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Decreasing Error

Increasing Runtime

Figure 6.10: Error vs. Time trade-off for Opponent, Uniform, and Oracle subsampling
strategies with varying trace length. For each shader with T program traces, we subsample
the trace such that the actual input trace length N is equal to T /2, T /4, T /8, etc., and
the x-axis shows each model’s relative trace ratio compared to the full program trace. The
circle shows perceptual error relative to the RGBx baseline (green square) for Opponent
(red), Uniform (purple), Oracle (blue), and Full Trace (gold). The black pentagon shows the
relative inference time (including shader program runtime and network inference) for each
N relative to the runtime of the Full Trace model. Similarly black square shows relative
inference time for the RGBx baseline. Note that the x-axis is on a log scale in relative trace
length compared to the Full Trace model, therefore although the relative error plot appears
linear as N increases, the actual performance improvement is faster at the beginning of the
plot: adding only a few traces quickly improves performance.
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trained with all of the program trace. Oracle always chooses the traces that have the highest

importance scores, while the Opponent always chooses the ones with the lowest scores. In

an analogy to the lottery ticket hypothesis [43], we hypothesize that the Oracle exploits a

winning “lottery ticket” found within the Full Trace model, and selects out the relevant trace

subset: a “lottery ticket trace.” The Opponent likewise selects losing tickets.

To better understand the trade-offs associated with the subsampled trace length, we

experimented with varying trace lengths using Opponent, Uniform, and Oracle subsampling

and compare them with the RGBx baseline, as shown in Figure 6.10. For each shader, the

trace is subsampled by a relative sample budget compared to the full program trace length T

(e.g. N= T /2, T /4). Under a fixed budget N , in most cases, the inference error decreases in

the ordering of Opponent, Uniform, and Oracle. This corresponds to our intuition because

Oracle selects traces that are beneficial to training based on prior knowledge from the Full

Trace model, and similarly Opponent selects traces that are unimportant based on the same

prior knowledge.

We provide statistical evidence for our findings when investigating trade-offs between

different subsampling strategies and subsampling budgets described in Section 6.6.2. Our

first null hypothesis makes the following assumption on the performance between Uniform

and Oracle subsampling: the ratio of relative error between Uniform and Oracle (µ0) is

less than or equal to 1. This hypothesis has a p-value of p0 = 7.2 × 10−4. Similarly, we

propose another null hypothesis regarding the performance between Opponent and Uniform

subsampling: the ratio of relative error between Opponent and Uniform (µ1) is smaller than

or equal to 1, which has a p-value p1 = 5.9 × 10−3. If we choose a significance level of

0.05 and apply Bonferroni correction over the 2 hypotheses, we have both p0 < 0.025 and

p1 < 0.025, indicating significant evidence that Oracle outperforms Uniform (µ0 > 1) and

Uniform outperforms Opponent (µ1 > 1). These statistics are computed using all possible

N available for all 4 shaders: N ∈ [T /2, T /4, T /8, T /16].
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To summarize, our hypotheses that Uniform outperforms Oracle, and Opponent outper-

forms Uniform each has p-values 7.2 × 10−4 and 5.9 × 10−3, respectively. These are smaller

than a threshold of 0.025 determined by correcting the traditional p threshold of 0.05 for the

two comparisons, so we conclude that the ordering Oracle outperforms Uniform outperforms

Opponent is significant.

It is also worth noting that even when N is small (e.g. the leftmost two data points in

the plots correspond to N below 50), the extra information from the program trace can still

substantially reduce the relative perceptual error without significant extra cost in inference

time. Because the x-axis in the plot is on a log scale, the actual performance gain would

have a more drastic slope starting from RGBx to a small N . Additionally, the current

comparison is advantageous to RGBx as its learning capacity matches that of the Full Trace

model as discussed in Section 6.5, which is more capacity than any of the subsampled models

in Figure 6.10.

In practice, subsampling strategies can be chosen based on resources allowed for training

and inference. If there is no limit at all, training a model with the Full Trace can always give

the best performance. If N is only limited by inference time, but extra cost and memory

can be permitted during training, one could use the Oracle strategy. However, when training

also becomes a practical concern, our results suggest that without actually learning from the

full trace in advance, there may not be a single subsampling strategy that could consistently

outperform all others, as discussed in Section 6.3.2. Thus, Uniform subsampling provides an

effective proxy that follows the performance of Oracle, and always outperforms the worst-case

scenario Opponent.

6.6.3 Can Multiple Shaders be Learnt Together?

This section explores whether part of the model can be shared across shaders with the same

task. Because program traces are unique per shader, we propose to train a separate shallow
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encoder for each of the shaders, followed by a task-specific model shared across shaders. The

setup is similar to the source-aware encoder by Vogels et al. [132].

Four shaders (Mandelbrot, Mandel-bulb, Gear, and Trippy Heart) are trained together

for the denoising task. The encoder consists of four 1x1 convolutional layers, where the

first layer outputs K channels and the rest output 48 channels. In our method, K = 48

while in the RGBx baseline K varies similarly as in Section 6.5. The encoder is identical

to the four 1x1 convolutions that analyze the input program trace in Figure 6.3. The

48-dimensional encoding then inputs to a shared denoising network, whose architecture is

identical to Figure 6.3 excluding the four initial 1x1 convolutions. All four shaders use

Uniform subsampling to bring their N to closest to 200. Training alternates between the 4

shaders after each epoch, and each shader is trained for 400 epochs.

We report the error statistics for the shared model in Table 6.1. Ours has on average

60% perceptual error compared to the RGBx baseline. Although one might expect this

experiment to benefit the RGBx baseline as the RGBx features are more similar, in fact,

ours outperforms RGBx in all cases.

6.7 Summary and Discussions

This chapter proposes the idea of learning from shader program traces. It evaluates this

idea in a range of learning contexts: denoising, simplified shaders, postprocessing filters, and

simulation. We describe a compiler that can produce program traces suitable for learning, as

well as practical considerations like how to handle large traces and how to process the trace

data to make it amenable to learning. Our method is agnostic to the learning architecture,

loss function, and training process; however, we also discuss a particular set of these that

worked well in our experiments. We evaluate our method on a range of shaders, over which

it compares favorably with baselines. We also analyze which features are important in the

trace, and explain how one can select subsets of the trace for learning.
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Links to our code, data, and supplemental video may be found on our project page:

https://pixl.cs.princeton.edu/pubs/Yang_2022_LFS/

Our method has several limitations, which offer potential avenues for future work. First,

as with many neural network-based approaches, the inference time is not negligible. For

example, for the denoising task, simple, fast shaders can draw sufficiently many samples

via supersampling to outperform inference. Likewise for the simplified shader tasks, one

could use the time budget for network inference to instead compute multiple samples of

the original more expensive shader. Future research might address this by developing spe-

cialized networks that are more efficient for inference, along similar lines as the method of

Gharbi et al. [47]. Another limitation of our TensorFlow implementation is that the op-

eration of collecting program traces and concatenating them into one single tensor is not

particularly efficient, and is a major cause of the inference time increasing with the trace

length (Figure 6.10). Additionally, TensorFlow is efficient for deep learning models, but less

efficient for shader computations. For example, for shaders with complex BRDFs, branching

generated by varying numbers of ray bounces per pixel may become a major bottleneck in

TF. We believe further engineering efforts could alleviate these bottlenecks, for example by

using compiled GLSL as a frontend renderer before the inference process.

The experiments described in this chapter were performed using computer graphics

shaders. Future work could explore how well the ideas introduced herein generalize to other

kinds of programs that can rely on (and tolerate) approximate solutions, for example, those

relying on stochastic algorithms or Markov-like decision processes.

227

https://pixl.cs.princeton.edu/pubs/Yang_2022_LFS/


Chapter 7

Conclusion and Future Work

Program representations include rich information both semantically and algorithmically.

While domain experts can leverage the program structure to manually design a better so-

lution for various tasks, there is a nontrivial gap to automating the process to arbitrary

programs. This dissertation takes steps to bridge the gap in three important tasks. We

first extend the traditional AD framework to automatically differentiate arbitrary discon-

tinuous programs (Chapter 2) and demonstrate its application in both procedural shader

programs (Chapter 3) and audio synthesizers (Chapter 4). Second, we explore automatic

convolution that smoothes a program by approximating its convolution with a Gaussian ker-

nel (Chapter 5), and show it can be used for bandlimiting procedural shaders. Finally, we

also demonstrate that if the input to a deep learning model is programmatically generated,

the model could benefit from learning from the entire program trace (Chapter 6). We verify

that the additional auxiliary input features help a variety of visual and simulation learning

tasks.

Based on this dissertation, I envision the following research directions to be promising:

Differentiating Discrete Parameters. Discrete parameter examples include categorical

choices that set the program into different modes, and integer-valued hyperparameters for

loop iteration or filter size. This type of parameter usually controls discontinuities on its
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own, and do not interact with continuously sampled parameters such as pixel coordinates

and time. As a result, the associated discontinuities are rarely sampled, therefore obtaining

their gradients using our Aδ rule is challenging. We argue perturbation should be applied

to these discrete parameters along the sampling axes for the discontinuities to be efficiently

sampled. For example, our audio synthesizer application (Chapter 4) proposes one such

solution: we apply random noise to the categorical choices such that different choices can be

sampled at different times. Future work could explore more general differentiation rules such

as the ones we propose in Section 2.4.2 for correctly differentiating the discrete parameters.

Differentiating Numerical Approximations. Many math or physics problems do not

have closed-form solutions, and are usually approximated numerically in programs. For ex-

ample, the FFT of a shader rasterization is a discrete approximation to the Fourier transform

of the original continuous image defined by the shader program. Similarly, the ray object

intersection found by a raymarching loop is a numerical root-finding approximation as well.

While AD or Aδ can be applied to the numerical approximation programs, the generated

gradient may amplify the noise within the approximation, such as those caused by phase

offset or the exact location of the discretization. As an alternative, one may develop a spe-

cialized gradient for each numerical problem by directly differentiating the underlying math

representation before the numerical approximation. This may achieve better gradient accu-

racy, as well as potential improvement in runtime. As an example, Section 3.1 differentiates

the implicitly defined geometry that bypasses the raymarching iterations, generating a more

accurate gradient with less memory footage and faster runtime.

End-to-End Optimization with Combinations of White-Box and Black-Box Mod-

ules. Deep learning proxies are widely used to replace modules within traditional pipelines

such as for rendering or camera. However, the neural pipeline usually has limited white-box

components [131] because many traditional white-box algorithms are non-differentiable. We

imagine the Aδ framework can be used in combination with traditional AD to allow users to
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…

Figure 7.1: Rendering or camera pipeline can be emulated using both black-box neural
proxies and white-box programs. They can be differentiated end-to-end (indicated by the
blue arrow) using both AD and Aδ differentiating frameworks.

freely emulate a pipeline with both neural proxies and discontinuous white-box programs as

in Figure 7.1. Therefore the composition can both easily inverse engineer black-box compo-

nents through data-driven neural proxies, as well as enjoy the flexibility and interpretability

provided by the white-box algorithms, leading to great potential for combining recent ad-

vances in neural proxies [131, 128] and classic algorithms.
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[4] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-time rendering. CRC
Press, 2008.

[5] Alexander Panasovsky. Celtic. https://thenounproject.com/icon/

celtic-1975448/, 2018.

[6] Anthony A Apodaca, Larry Gritz, and Ronen Barzel. Advanced RenderMan: Creating
CGI for motion pictures. Morgan Kaufmann, 2000.

[7] M Baker and S Sutlief. Green’s functions in physics version 1. 2003.

[8] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,
Pradeep Sen, Tony DeRose, and Fabrice Rousselle. Kernel-predicting convolutional
networks for denoising monte carlo renderings. ACM Transactions on Graphics (TOG)
(Proceedings of SIGGRAPH 2017), 36(4), July 2017.
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