
To appear in ACM TOG 35(6).

Supplemental Material for
VizGen: Accelerating Visual Computing Prototypes in Dynamic Languages

Yuting Yang1 Sam Prestwood1 Connelly Barnes1
1University of Virginia

Abstract

This is a supplemental document for the paper “VizGen: Accel-
erating Visual Computing Prototypes in Dynamic Languages.” In
Section 11, we explain in detail when compiled versus interpreted
code is generated. Next, in Section 12, we present results from
the VizGen compiler for applications that use 32-bit floating-point
precision.

11 Compiled versus interpreted code

In this section, we explain in detail when native C versus interpreted
Python code is generated. When reading this paragraph, please re-
fer to the main document for the VizGen compiler, Section 5, “Pro-
gram transformations,” and Section 9.1, “Assessing the effect of
each transformation.”

Frequently, significant performance gains are due to rewriting code
that calls the Python interpreter to native C code. Four of our trans-
formations help transform interpreted code to native C: type spe-
cialization, API call rewriting, loop over implicit variables, and
vectorize innermost. We now briefly discuss how each of these
four transformations converts code to native C. Type specializa-
tion can substitute in native C types such as scalars, fixed-length
arrays, or variable-length arrays. API call rewriting can rewrite API
calls within the Python interpreter to corresponding functions that
have been implemented in C. Loop over implicit variables gener-
ates fused native C array operations from Python array operations
with known dimensionality or sizes. Vectorize innermost is an alter-
native method of generating native C SIMD array code that applies
only for special cases where the last dimension of an array is known
to be 2, 3, or 4.

...

1



To appear in ACM TOG 35(6).

12 Evaluation: 32-bit floating-point results

In this section, we present results for applications that use 32-bit
floating-point precision. When looking at these results, please com-
pare them with the main document for the VizGen compiler, Sec-
tion 9, “Evaluation,” and the corresponding Table 1, which presents
run-times for each application. In the main document for VizGen,
results are presented for both 64-bit floating-point mode, and an
“approximating” mode which selects either 64-bit or 32-bit preci-
sion based on whichever is faster. In this section, we present in
Table 4 results where all applications and compilers are using 32-
bit floating-point mode.

Ours Speedup vs Ours Shorter vs

Application Ours Ours
Time Python Numba PyPy Pythran unPython* C code Lines vs C vs Cython
[ms]

Bilateral grid 86.4 1284× 1334× 3755× Error 1146× 0.8× 101 2.6× 3.0×
Camera pipeline 0.9 2120× 2074× 2889× Error 707× 1.2× 173 1.6× 3.0×
Composite (gray) 0.3 2283× 0.7× 42× 2.4× 1.0× 1.1× 6 2.3× 3.0×
Composite (RGB) 0.4 2859× 75× 1603× 12× 1864× 1.2× 6 2.7× 3.0×
Harris corner 11.5 4308× 3.7× 4590× Error 1.4× 1.3× 92 1.2× 3.2×
Interpolate 6.7 451× Error 338× Error 402× 8.8× 39 4.8× 4.8×
Local Laplacian 3.1 775× Error 820× Error 423× 1.9× 76 4.8× 3.7×
Mandelbrot 20.0 279× 201× 3.7× 10× 1.0× 3.2× 29 1.6× 2.8×
One stage blur (gray) 0.5 1793× 2.6× Error 3.2× 1.1× 1.4× 31 1.8× 9.5×
One stage blur (RGB) 0.9 3761× 325× 12994× 60× 3464× 1.4× 31 2.5× 2.3×
Optical flow 9.5 2793× Error Error Error 2344× 0.9× 232 1.6× 3.1×
Pac-Man 0.1 274× 0.8× 4.0× 1.9× 2.9× 10× 111 1.2× 2.0×
Raytracer 1.7 1545× 1564× 1058× Error 1380× 0.8× 49 3.6× 3.1×
Two stage blur (gray) 0.5 692× 0.8× 141× 4.4× 1.3× 1.5× 10 2.1× 4.3×
Two stage blur (RGB) 0.8 2118× 82× 1474× 25× 2010× 3.7× 10 2.5× 4.3×
Median 2118× 79× 1058× 7.2× 423× 1.4× 2.3× 3.1×

Table 4: Comparison of the speedups and lines of code for our compiler versus alternatives, with applications in 32-bit mode. Please consult
Section 9 and Table 1 of the main paper for a full description of the applications and the different measurements in these columns.

2


