
To appear in ACM TOG 35(6).

VizGen: Accelerating Visual Computing Prototypes in Dynamic Languages

Yuting Yang1 Sam Prestwood1 Connelly Barnes1
1University of Virginia

(a) Composite (RGB), 1732x Speedup (b) Harris corner, 1223x Speedup (c) Mandelbrot, 

266x Speedup

python
ours

python
ours

python
ours

Figure 1: Three applications that were compiled with our compiler, which is specialized for visual computing programs. Image compositing
(a) gains a 1732× speedup over the equivalent code in the Python interpreter. Our result is shown in the diagonal upper-left corner, and the
Python result is shown in the diagonal lower-right corner: notice there is no difference between the two images. A Harris corner detector (b)
and a Mandelbrot fractal renderer (c) likewise gain significant speedups after being compiled with our compiler, relative to Python.
Photo credits: (a) Karen Arnold and Skitterphoto, (b) modified from original by Tim Green.

Abstract

This paper introduces a novel domain-specific compiler, which
translates visual computing programs written in dynamic languages
to highly efficient code. We define “dynamic” languages as those
such as Python and MATLAB, which feature dynamic typing and
flexible array operations. Such language features can be useful for
rapid prototyping, however, the dynamic computation model intro-
duces significant overheads in program execution time. We intro-
duce a compiler framework for accelerating visual computing pro-
grams, such as graphics and vision programs, written in general-
purpose dynamic languages. Our compiler allows substantial per-
formance gains (frequently orders of magnitude) over general com-
pilers for dynamic languages by specializing the compiler for vi-
sual computation. Specifically, our compiler takes advantage of
three key properties of visual computing programs, which permit
optimizations: (1) many array data structures have small, constant,
or bounded size, (2) many operations on visual data are supported
in hardware or are embarrassingly parallel, and (3) humans are not
sensitive to small numerical errors in visual outputs due to changing
floating-point precisions. Our compiler integrates program trans-
formations that have been described previously, and improves ex-
isting transformations to handle visual programs that perform com-
plicated array computations. In particular, we show that dependent
type analysis can be used to infer sizes and guide optimizations
for many small-sized array operations that arise in visual programs.
Programmers who are not experts on visual computation can use
our compiler to produce more efficient Python programs than if they
write manually parallelized C, with fewer lines of application logic.

CR Categories: I.3.6 [Computing Methodologies]: Com-
puter Graphics—Methodology and Techniques; I.4.9 [Comput-
ing Methodologies]: Image Processing and Computer Vision—
Applications;

Keywords: Compilers, imaging, computational photography

1 Introduction

Visual datasets are rapidly growing in size, due to the widespread
use of cell-phone cameras, as well as video and photo sharing sites
such as YouTube and Facebook. For example, approximately 60
hours of video are added to YouTube every minute [Syed-Abdul
et al. 2013] and 350 million photos are uploaded to Facebook every
day [Quo ]. We believe that these trends will continue to strengthen,
due to forces such as increasing photograph resolutions and in-
creased worldwide Internet adoption. To scientifically model, en-
gineer, and derive knowledge from such datasets, it is necessary to
develop efficient codes to process visual data. For the purpose of
this paper, we define visual computing broadly as computation over
these datasets, using graphics and vision.

However, there is currently a tension when developing programs
that work with visual datasets. This tension is between the run-time
efficiency of the final programs and easy exploratory prototyping.

At one extreme, if maximum efficiency is desired, then visual com-
puting programs can frequently be optimized to run even faster than
a naive C implementation. This can be done by hiring an engineer
who is a domain expert, who can craft a highly efficient program.
However, this efficiency typically comes at the cost of greater code
complexity, less portability, and less maintainability [Ragan-Kelley
et al. 2013]. Another alternative is to use a domain-specific lan-
guage. For example, the Halide domain-specific language [Ragan-
Kelley et al. 2013] can be used for computational photography ap-
plications, but it is not suitable for expressing all graphics or vi-
sion applications, nor is it Turing complete. As a result, the most
fruitful optimizations currently either require a program that fits
in a restricted domain-specific language (DSL) such as Halide’s,
or require hiring domain experts to develop complicated platform-
specific optimizations.

At the other extreme, a scientist or developer might choose to work
in a language that facilitates rapid prototyping, such as Python
or MATLAB. These “dynamic” languages have a flexible runtime
model and dynamic typing, which can be beneficial for quick iter-
ative design. However, normally the resulting programs run slowly
because such languages typically incur large overheads in run-time,
and these are particularly acute in graphics and vision problems.
This is due to low-level implementation details that must be handled
by the language’s interpreter or compiler, including issues such as

1

https://pixabay.com/p-220428/
http://skitterphoto.com/?portfolio=sunny-day
https://www.flickr.com/photos/atoach/4983323227


To appear in ACM TOG 35(6).

Python blur program C blur program

Figure 2: An example of a naively written two-stage blur program in Python (left), and C (right). The Python program is significantly more
concise, and also more general: it can handle either grayscale or 3-channel input images, whereas the C program only handles 3-channel
input images. Without using our compiler, the Python program is orders of magnitude slower than the C program. When our compiler is
used in “approximating” mode, where it can rewrite 64-bit floats to 32-bit, the Python blur is 6× faster than the C program on a four-core
machine. In non-approximating mode, the Python program is still 3× faster for both 32-bit and 64-bit precision. See Section 9 for results.

boxing of types, heap-allocated variables, garbage collection, ar-
ray allocation, and so forth. Specialized compilers for dynamic
languages such as just-in-time (JIT) compilers have been devel-
oped, which can sometimes ameliorate these problems [Bolz et al.
2009] [Lam et al. 2015]. However, even when these compilers
are used, visual computing codes that perform fine-grained loop-
ing or complicated array calculations in “dynamic” languages such
as Python or MATLAB can still be orders of magnitude slower than
C code (see e.g. our results in Section 9). This means that novice or
non-expert developers cannot easily develop efficient visual com-
puting programs, and even experts may struggle with either main-
taining non-portable and highly optimized codes, or else choosing
restrictive DSLs.

This paper proposes the following goal to the research community
and takes steps towards achieving it: it should be possible to au-
tomatically translate visual computing prototypes in dynamic lan-
guages into highly-performant code. We believe that this goal is a
worthy one for two reasons. First, dynamic languages are widely
used in academic and industrial research. If one can automatically
translate mock-ups into efficient code then this will lower the costs
of technology transfer, increase application interactivity, and accel-
erate development. Second, being able to make such an automatic
translation could help democratize visual computing by making it
more accessible for novice and non-expert programmers. by per-
mitting them to express efficient programs in easy-to-learn and sim-
ple languages.

Our compiler framework is based on three key properties of visual
computing programs, which permit optimizations. These are: (1)
many arrays have small, constant, or bounded size, (2) many opera-
tions on visual data are supported in hardware or are embarrassingly
parallel, and (3) humans are not sensitive to small numerical errors
in visual outputs due to changes in floating point precision.

Based on the previous key properties, we contribute a system
that overcomes common performance challenges encountered when
compiling visual programs in dynamic languages. We integrate pro-
gram transformations that have been described previously, and im-
prove these existing transformations to handle visual programs that
perform complicated array computations. Visual programs tend
to interleave many computations with both small and large arrays
across function calls, and at different loop nesting depths. These op-
erations tend to create many performance issues when compiled in a
simplistic manner. For example, a naively compiled program could
reallocate arrays within each loop iteration, use arbitrary size array
constructors, fail to use the constant bounds to accelerate loops, or

fail to use efficient vector code. Our system addresses these con-
cerns by optimizing small and large array computations at multi-
ple granularities of nesting and call sites. Our optimizations work
together to rewrite operations over and within arrays to be more
compute efficient.

One important property that we leverage in our compiler is the
expressive power of matrix and vector notation in programs. We
have found that not only is matrix and vector notation frequently
more concise and general than the corresponding scalar code, but
it also frequently permits greater optimization, since it is specified
at a high level of abstraction. As a simple illustrative example, we
show a two-stage separable blur program in Figure 2(left), which is
written in Python, over pixels that can either be scalars or vectors.
This code conveniently remains unchanged regardless of whether
the pixels are grayscale, RGB, or alpha-premultiplied RGBA. Our
compiler is able to specialize for constant numbers of color chan-
nels within this representation, and apply further optimizations such
as changing array memory layout to better facilitate vectorization.
We do this by using dependent types to infer both type and array
size information.

We developed a prototype compiler implementation for the Python
language and tested it on 12 visual computing applications. As a
motivating example, consider again the simple blur example in Fig-
ure 2, which includes code in both Python and C. The Python pro-
gram is significantly shorter, and when used with our compiler, is
3 to 6× faster than the C program. Our full results in Section 9
show a median speedup of orders of magnitude over the Python
interpreter and Python JITs such as Numba and PyPy. This is suf-
ficient to speed up many programs that originally were slower than
real-time to interactive or real-time. Our applications were written
by two students who are not domain experts. On average, the ap-
plications built with our compiler are both shorter (2.3×) and faster
(2.4×) than their equivalents implemented in manually parallelized
C. We use an autotuner, which is guided by an indicative workload,
to discover the best set of optimizations. Thus, there is no anno-
tation burden or other modification of the input program required.
Currently, our compiler only accepts the Python language as input,
however, the transformations we have developed are not specialized
for Python, and therefore could also apply to other languages.

2 Related work

In this section, we will first discuss related work on image pro-
cessing languages, followed by more general software engineering
topics such as stencil optimizations, profile-guided optimization,

2



To appear in ACM TOG 35(6).

Python compilers, and dependent types.

2.1 Image processing languages

The Halide [Ragan-Kelley et al. 2013] language is a domain-
specific language (DSL) that permits image pipelines to be opti-
mized by separating the algorithm and the schedule. The algo-
rithm describes what is to be computed, and the schedule describes
how it should be computed, in terms of fusing or inlining computa-
tion stages, storing or recomputing intermediate values, parallelism,
and so forth. Our compiler also permits scheduling choices by a
search over different optimizations, which we simply call program
transformations. Halide is restricted to image pipelines which can
be modeled as purely functional computations over a sequence of
dense intermediate arrays, and therefore it cannot express many im-
perative programs, and it is not Turing complete. In contrast, our
compiler accepts as input a general-purpose dynamic programming
language, and then places domain expertise in the transformation
rules used, by specializing these rules for visual computing. Other
than Halide, polyhedral optimization has been used to generate effi-
cient GPU code from image pipelines [Cornwall et al. 2009]. Poly-
hedral optimization has also been used in PolyMage [Mullapudi
et al. 2015], which compiles an image processing DSL similar to
Halide. Both Halide [Mullapudi et al. 2016] and PolyMage have
recently developed model-driven approaches to determine the best
schedules or optimizations. Earlier image processing languages fo-
cused on simpler optimizations, such as fusing only simple image
stages without stencils [Elliott ] [Shantzis 1994]. The Terra [DeVito
et al. 2013] language uses multi-stage programming in conjunction
with the dynamically-typed language Lua, and has also been used
to explore image processing applications.

2.2 Stencil optimizations

Stencil codes are iterative computations over an array, where each
computed value depends on a fixed surrounding region, called the
stencil. Uses include solving partial differential equations, image
processing, and other scientific applications. Stencils have been ex-
tensively studied; we briefly review some work in this space. Effi-
cient cache-oblivious stencil computations were developed by Frigo
and Strumpen [2005]. The Pochoir compiler transforms serial sten-
cil computations into an efficient parallel cache-oblivious compu-
tation [Tang et al. 2011]. Stencil computations can be tiled [Kr-
ishnamoorthy et al. 2007], which typically improves cache effi-
ciency, but depending on whether earlier stages are inlined, may
introduce redundant computation along tile boundaries. Compiler
researchers have generated efficient CPU and GPU code for stencils
via tiling [Holewinski et al. 2012] [Krishnamoorthy et al. 2007]. In
our compiler, we instead focus on program transformations that are
specialized for visual computing in dynamic languages.

2.3 Profile-guided optimization

Optimizing compilers use semantics-preserving transformations
that may or may not improve overall performance. For example,
inlining functions on a frequently-visited path may improve run-
time performance, while inlining functions on a rare path may have
little effect on performance. One solution to this problem is to
record a trace or profile of run-time information on an indicative
workload. The efficient gathering (e.g., [Ball et al. 1998] [Gra-
ham et al. 1982]) and use (e.g., [Ammons and Larus 1998]) of
such profile information is a long-studied subfield. Many modern
compilers ship with some degree of support for profile-guided op-
timization (e.g., GCC’s -fprofile-generate, LLVM’s -fprofile-instr-
generate, etc.). Useful profiles can even be approximated stat-
ically [Buse and Weimer 2009]. These approaches traditionally

gather profile information and then choose optimizations or param-
eters: a two-step process. By contrast, our compiler utilizes an
iterative feedback loop in which multiple candidate optimizations
are separately evaluated in terms of their relative performance. We
call this an “autotuner.” In that light, our technique is closer to the
”Fastest Fourier Transform in the West” adaptive tuning architec-
ture [Frigo and Johnson 1998] or the ATLAS project [Whaley et al.
2001]. Recent works have focused on tuning programs using mul-
tiple search strategies [Ansel et al. 2014], and automatically tuning
programs for better parallelism [Morajko et al. 2007; Karcher and
Pankratius 2011]. More generally, this is an area of search-based
software engineering [Harman and Jones 2001].

2.4 Python compilers

Our current compiler implementation accepts the Python language
as input. There have been a number of compilers developed for
the Python language. These include early compilers that do not
feature array support, such as StarKiller [Salib 2004] and Shed-
Skin [Dufour and Coughlan 2013], which are not well-suited for
visual computing. More recent compilers do feature array sup-
port. These include HOPE [Akeret et al. 2015], unPython [Garg
and Amaral 2010], the Numba just-in-time (JIT) compiler [Lam
et al. 2015], PyPy [Bolz et al. 2009], and Pythran [Guelton et al.
2015]. The Nuitka1 compiler does not currently do type inference
and so is not particularly suited for performance-intensive visual
computing. HOPE focuses on astrophysical simulations. We com-
pare against the other compilers, and find they either generate code
that is frequently orders of magnitude slower than ours for visual
computing programs, or else they cannot accept our input programs
due to them falling outside the compiler’s targeted domain. The
speedups found by our compiler are because we take advantage of
domain knowledge in visual computing. In particular, we use de-
pendent type analysis to determine small, constant size arrays, and
then accelerate small array operations using a variety of strategies.
The Cython [Behnel et al. 2011] language permits C type and par-
allelism annotations to be added to Python. Our current compiler
outputs code in Cython. This helps simplify the design of the com-
piler, because the target language is similar to the source language.

2.5 Dependent types

A dependent type is a type whose definition depends on a value. For
example, consider a function zeros(n) that accepts an integer ar-
gument n and returns a length n array of floats [0.0, 0.0, . . . , 0.0].
This function could certainly be said to have array type, but be-
cause the length of the array is not specified in the type, this will
not permit many useful optimizations. More usefully, we could say
that zeros(n) has a dependent type, where the return type is “the
set of arrays of length n,” and n is the value passed in to the func-
tion. We use inference of dependent types to deduce constant array
bounds throughout visual programs, as described in Section 4.1.
Dependent types have been used to eliminate array bounds checks
by inferring array sizes at compile time [Xi and Pfenning 1998], in-
crease the safety of low-level C programs by using bounded point-
ers [Condit et al. 2007], as well as increase the expressiveness of the
type system [Augustsson 1998; Xi and Pfenning 1999]. We specifi-
cally focus on using dependent types to infer array sizes throughout
visual programs.

3 Overview

This section gives an overview of our system. We first discuss some
key properties of the input programs that our compiler assumes.

1http://nuitka.net/

3

http://nuitka.net/
http://nuitka.net/


To appear in ACM TOG 35(6).

Next, we give an overview of the different components of our sys-
tem, and relate these back to the key properties.

3.1 Key properties and assumptions

Visual computing programs have three key properties that we ex-
ploit to develop domain-specialized compiler optimizations:

1. Many data structures, such as lists and arrays, have small,
bounded, or constant size. If array size information is in-
ferred throughout the input prototype program, then the com-
piler can use optimizations such as constant folding, stack al-
location, pre-allocating arrays only once, and loop unrolling.

2. Many operations on visual data are embarrassingly parallel
or are supported in hardware. Loops in visual programs fre-
quently have no dependencies, and so they can be trivially par-
allelized. Operations on pixels, vertices, and small matrices
are supported in hardware. For example, one such hardware-
supported optimization is Simultaneous Instruction Multiple
Data (SIMD) vectorization.

3. In some cases, humans are not sensitive to very small errors
in the output, such as a 0.001% error in colors of an image.
In our case, if the programmer enables an “approximation”
mode, then the floating-point precision in computations can
be optimized by the compiler, to gain higher efficiency at the
cost of lower precision.

Our current compiler uses profile-guided optimization, and there-
fore a key assumption that we make is that the input program can be
run on an indicative workload. For our applications, this workload
simply consists of a one-line call of the user’s program on a rep-
resentative set of parameters and/or input images. For efficiency,
our compiler assumes that the input program does not use dynamic
execution of string programs (using functions such as eval()), or
raise unhandled exceptions. Within these constraints, the compiler
preserves correctness, when the “approximation” mode is not used.

3.2 Overview of system components

An overview of the components of our system is shown in Fig-
ure 3. Our system has three main sub-parts: static analysis com-
ponents, program transformations, and the autotuner. The compiler
first applies static analysis components (discussed in Section 4),
and then applies optimizations as a sequence of program transfor-
mations (discussed in Section 5). Static analysis is an analysis of
a computer program that does not require running the program. A
program transformation is an operation that transform an input pro-
gram, yielding an output program. After discussing these compo-
nents, in Section 6, we next present the autotuner, which automati-
cally selects program transformations that make the input program
efficient. Finally, we evaluate a suite of Python test applications in
Sections 8 and 9. Throughout the document, we have hyperlinked
components to appropriate sections. We next briefly summarize the
static analysis components and the program transformations.

The static analysis components are:

S1. Type and size inference uses dependent type analysis to infer
types, including constant sizes for arrays. This is related to
key property (1);

S2. Parallelism analysis determines whether a loop can be safely
parallelized. This is related to key property (2); and

S3. Preallocation analysis determines whether a array’s storage
can be preallocated. This is related to key property (1).

The program transformations are:

Static Analysis (§4)

Program Transformations (§5)
T1. Type specialization

T2. API call rewriting
T3. Array storage alteration
T4. Loop over implicit variables
T5. Parallelize loop
T6. Preallocate arrays
T7. Remove loop conditionals
T8. Vectorize innermost

S1. Type and size inference
S2. Parallelism analysis
S3. Preallocation analysis

Autotuner (§6)

Figure 3: An overview of our system showing its components and
their dependencies. There are three categories of components:
static analysis components (S1, ..., S3, shown at top left), program
transformations (T1, ..., T8, shown in right), and the autotuner
(shown in bottom left). Arrows indicate dependencies between com-
ponents: an arrow from A to B indicates that A depends on B. The
program transformations T2-T8 depend on type specialization (T1),
so the smallest arrow in the top-right indicates a multiple (block)
dependency. See Section 3.2 for summary descriptions of these
components.

T1. Type specialization assigns static types for variables, which
permits greater efficiency since dynamic type information
does not need to be tracked at run-time;

T2. API call rewriting rewrites calls to common built-in and API
functions to equivalents that are more efficient on the target
hardware. This transformation is related to property (2);

T3. Array storage alteration modifies array types or shape to be
more efficient. This is related to key properties (2) and (3);

T4. Loop over implicit variables fuses array operations into a sin-
gle set of nested loops. This is related to key property (1);

T5. Parallelize loop converts a for loop into a multi-threaded par-
allel loop. This is related to key property (2);

T6. Preallocate arrays allocates array storage only once to de-
crease the burden on the memory manager and increase cache
performance. This is related to key property (1);

T7. Remove loop conditionals accelerates innermost loops by re-
moving bounds checks with the help of a theorem prover. This
is related to key property (2); and

T8. Vectorize innermost applies SIMD vectorization to certain ar-
ray operations. This transformation is related to property (2).

The dependency graph in Figure 3 indicates that some transforma-
tions have dependencies, which require that other transformations
or static analysis components be applied first. For example, before
vectorization (T8) can be applied, type specialization (T1) must
have first been applied.

Our compiler develops a variety of different transformations, some
of which are generic, and are present in other compilers. The em-
phasis of our paper is therefore on the more novel transformations,
such as our focus on small-size arrays, dependent type analysis to
determine array sizes, the “approximating” modification of 64-bit
floats to 32-bit floats, and the beneficial interaction between these
different components in dynamic programs. Type specialization
and API call rewriting are common in JITs [Bolz et al. 2009; Lam
et al. 2015]. Preallocation of arrays, removing conditionals, and
vectorization have been used in PolyMage [Mullapudi et al. 2015]
and Halide [Ragan-Kelley et al. 2013]. The extraction of vector-
izable workloads from arbitrary R programs has been explored in
Riposte [Talbot et al. 2012]. Array expression fusion has been used
with similar effect to our “loop over implicit variables” transforma-
tion in the Julia language [Bezanson et al. 2012] (specifically, the

4



To appear in ACM TOG 35(6).

devectorize macro), Theano [Bergstra et al. 2010], and other lan-
guages.

4 Static analysis

In this section, we discuss static analysis components. First, in Sec-
tion 4.1, we show how dependent types can be used to statically
infer types and array sizes throughout visual programs. Next, in
Section 4.2, we discuss how static analysis can be used to deter-
mine whether to parallelize loops and preallocate arrays.

4.1 Type and array size inference

In dynamically typed languages, type inference can be used to iden-
tify known types throughout programs [Salib 2004]. These known
types can be used to compile portions of a program to efficient code.
One challenge we found in naively applying type inference is that
vectors or matrices can easily be labelled as having unknown size
or dimensionality. To address this challenge, we used a more so-
phisticated type inference strategy that identifies known small sizes
of arrays throughout visual programs by using dependent type anal-
ysis.

As a motivating example, consider a small program that modifies
an input color (r, g, b) in sRGB color space by multiplying it by a
color matrix M . In pseudocode:

Algorithm 1 Color matrix program

1: function apply color matrix(r, g, b)
2: n = 3
3: c = zeros(n)
4: M = zeros((n, n))
5: c[0] = r; c[1] = g; c[2] = b
6: M [0, 0] = 1.05; M [1, 1] = 0.9; M [2, 2] = 1.0
7: return matrix mul(M , c)

In the above program, c is a length 3 color vector, M is a 3x3 color
matrix, the zeros() function builds either a 1D or 2D array of ze-
ros depending on its argument’s value, and matrix mul() com-
putes a matrix-vector product. In visual programs, such calcula-
tions involving small 2D, 3D, or 4D vectors or matrices are very
common. This is because these vectors can be used to represent
colors, vertices, directional quantities such as edge and ray vec-
tors in Euclidean space, and linear transformations between these.
These operations particularly tend to occur in the innermost loops
of programs, where they are applied many times on pixel colors,
vertices, or other elements of arrays. Dynamically-typed languages
tend to represent arrays such as c and M using a generic multidi-
mensional array type, for flexibility and generality. Because of this,
dynamically-typed languages tend to be inefficient when executing
such programs.

To make small array operations efficient throughout visual pro-
grams, we analyze dependent types throughout the program. Recall
from our related work discussion that a dependent type is a type
whose definition depends on a value. As a motivating example, in
Algorithm 1, the zeros() function receives types that are either
the integer n, or the tuple (n, n). Therefore, if we simply analyze
only the types in the program, this will be insufficient to deduce
that c is a length 3 vector or M is a 3x3 matrix. However, if we also
analyze the values passed into the zeros() function, then we can
discover that c has a dependent type of “length 3 array.” Crucially,
this dependent type depends on both the types and values supplied
to zeros(). Likewise, we can discover that M has a dependent
type of “3x3 matrix.”

In general, dependent types can be fairly complicated to analyze,
or even undecidable [Augustsson 1998]. Therefore, we implement
only a simple dependent type analysis system that is well-suited for
discovering small array bounds. This proceeds as follows. First,
similar to most JITs, we determine all type signatures that are
passed into functions, and produce a type-specialized variant of
each function based on the types passed into it. Different type-
specialized functions are produced for different small size array
bounds: for example, specialized variants of a single blur function
could be created for 2D grayscale image inputs, or a three-channel
3D array containing RGB colors. In our implementation, we rely
on the indicative workload for the profile-guided optimization to
determine type specializations, but this could also be done in a JIT
compiler. For safety, if no type-specialized variant of a function is
available, then the compiler falls back to a generic variant. Next,
given these types, we perform a static analysis of dependent types.

The dependent type analysis proceeds by determining for every
function call both the types and values of the arguments. The analy-
sis is conservative so that programs are always correct: thus, arrays
will labelled as having unknown size if their size is unknown, and
any variable whose type cannot be inferred at all will be labelled as
having “unknown” type (this could result in either a slower program
or the programmer could manually annotate the type). To make sure
the analysis is tractable, in our dependent type analysis, the values
supplied are only those which are compile-time constants.

If a built-in or third-party module function is called such as the
zeros() function, then it is supplied with all types and compile-
time constant values. In the case of the zeros() function, type
inference cannot proceed through the function, because the core
functionality is implemented in C for efficiency. Thus, for such any
builtin functions that cannot be analyzed through, if array bounds
are to be inferred, then the compiler’s library must supply an auxil-
iary “dependent type function.” This dependent type function runs
at compile-time. It is given the function’s argument types and any
argument compile-time constant values, and determines the depen-
dent type returned by the function.

In our implementation, we have manually written dependent type
functions for common builtin array routines. Functions where de-
pendent types are particularly important include those that construct
arrays from lists of numbers, or arrays that are uninitialized, filled
with zeros, ones, or the identity matrix, as well as sums and prod-
ucts along given dimensions. This is because the return type of
these functions depends on the argument values.

4.2 Static analysis of parallelism and preallocation

In addition to the dependent type analysis performed previously,
we also statically analyze the input program to determine if loops
can be parallelized and if arrays can be preallocated. As in the
previous section, we perform such analysis conservatively to ensure
the correctness of the compiled program.

Loop parallelism analysis. Many loops in visual computing pro-
grams are embarrassingly parallel. We use loop dependence analy-
sis to independently determine whether each loop is trivially paral-
lelizable. We use long-standing techniques for this that are similar
to Polaris [Blume et al. 1996]: we determine whether there are no
cross-iteration dependencies in loops, and identify whether there
are any “loop private” variables (including arrays) that can safely
be allocated in thread-local storage.

Preallocation analysis. Certain arrays such as temporary and out-
put buffers can be pre-allocated once, rather than re-allocated with
every execution of a procedure. We use similar ideas to existing
work in this area, such as the preallocation analysis in SISAL [Cann

5



To appear in ACM TOG 35(6).

and Evripidou 1995], which preallocated arrays that have a fixed
maximal size. In our case, there are some additional subtleties be-
cause operations such as the “zeros()” function are often used
to allocate arrays that represent say colors of an image. One step
we have to take is perform a whole-program alias analysis to ver-
ify that no expressions that depend on an array would alias if the
array is preallocated. Because data such as images could vary in
size, we also check the size requirements of the “preallocated” ar-
ray at the top of each function call, and dynamically increase the
size if needed. Finally, initializing an array with zeros is slower
than simply leaving the memory uninitialized, but the later is po-
tentially unsafe. Therefore, we check if the range of array indices
written to is either the full array, or larger than the range of array
indices that are subsequently read from (the latter is proved by a
theorem prover [De Moura and Bjørner 2008]). If this is the case,
then an array need not be initialized.

5 Program transformations

In this section, we give a detailed explanation of each of the pro-
gram transformations that were briefly mentioned in the overview
(Section 3). We first discuss type specialization, since it is fun-
damental to the other transformations, and then discuss the other
transformations in alphabetical order.

Type specialization. The static analysis stage identifies for each
function, the set of input type signatures called for that function.
For each function type signature, type specialization emits a spe-
cialized variant of that function with type declarations for all in-
put, output, and local variables. The other transformations depend
on type specialization, because type information is needed to make
further optimizations. Type specialization also detects arrays with a
constant size that is no larger than a maximum size T and rewrites
these to be stack-allocated, so as to prevent unnecessary use of dy-
namic memory allocation (we use T = 30).

API call rewriting. In dynamic languages, simple API calls such
as taking a dot product between vectors in IR3 can generate highly
inefficient code. This is because this may generate an API call for
a dot product between vectors of arbitrary length. We observed that
in visual programs, there is heavy use of linear algebra routines over
vectors or matrices of two, three, and four dimensions. To improve
the efficiency of such code, we detect when the dependent type of
an array has a constant small size (2, 3, or 4), and use a typed macro
facility to replace API calls such as tensor product with optimized C
implementations of these. Currently we have implemented portable
yet efficient C linear algebra routines such as norm, dot product,
matrix-vector product, and length, as well as elementwise math op-
erations such as clip, square, square root, absolute value, random,
power, and so forth.

Array storage alteration. One goal of our compiler is to en-
able novice and non-expert programmers to easily write efficient
code. However, some optimizations such as SIMD vectorization
are highly useful for visual computing programs, but require de-
tailed knowledge of low-level array storage formats. We attempt to
shield programmers from needing to know these details, by devel-
oping a transformation that modifies array storage layouts through-
out an entire graphical program. This transformation can option-
ally rewrite all double-precision arrays to single-precision, if the
“approximation” mode is turned on. It can also rewrite all arrays
ending with a dimension of length 3 to internally be stored such
that the stride for the last dimension is 4 (so there is an unused ex-
tra value). The stride of an array is simply the number of array
elements in the memory layout between successive elements along
a given dimension. The rewriting from a stride 3 to 4 storage format
facilities vectorization, and proceeds by modifying all color image

read functions within this context to return stride 4 arrays, and by
modifying all array operations between stride 3 and 4 arrays to re-
cursively attempt to rewrite the shorter array to have stride 4.

Loop over implicit variables. It is common for array operations in
dynamic languages to be expressed in a shorthand form that omits
implicit variables. For example, if A, B, and C are vectors, matri-
ces, or images of the same size, their average might be expressed
as D = (A+B +C)/3. Typically, in such expressions, it is more
efficient to calculate the result element-wise by fusing as much as
possible of the computation. For instance, with a 2D array Di,j ,
one could calculate directly Di,j = (Ai,j +Bi,j +Ci,j)/3. This is
more efficient than calculating an intermediate result R1 = A+B,
computing a second intermediate array R2 = R1 + C, and then
obtaining the final result D = R2/3. This transformation simply
fuses such computations and inserts loops over all implicit vari-
ables as needed. Furthermore, it is common in visual computing
programs for arrays to be of known constant and small size. In
this case, the transformation inserts known bounds for loops, thus
further increasing efficiency. Unlike the previous three transforma-
tions, which are applied globally to the entire program, the loop
over implicit variables is applied to a given program line.

Parallelize loop. The loop parallelization transformation may ap-
ply thread parallelism to any loop that has been identified as being
suitable for parallelism in the static analysis stage.

Preallocate arrays. In prototype programs, it is common to allo-
cate arrays on the fly as needed. For example, a high-pass filter
might be described by the following pseudocode:

Algorithm 2 High-pass filter

1: Allocate arrays temp and output as same size as input.
2: Blur input array into temp.
3: Calculate output = input− temp.

If called repeatedly, this function will repeatedly reallocate the in-
termediate arrays temp and output. This is inefficient for the cache
and the dynamic memory manager, because the allocated locations
could continually move around. Preallocation transforms the code
to allocate global buffers (or in multithreaded code, thread-local
buffers) once when it is first run, which the arrays temp and output
are then pointed to. These buffers are only reallocated on subse-
quent runs if the requested array size exceeds the current storage
capacity. This transformation is always applied to all arrays which
have been identified in the static analysis stage as suitable for pre-
allocation.

Remove loop conditionals. In visual computing programs, it is
common for there to be array lookups, which determine color or
texture information. These lookups frequently include a conditional
testing whether a pixel or voxel is out of bounds, in which case a
default color might be used (such as black). However, such condi-
tionals introduce major inefficiencies if performed in performance-
critical inner loops [Grosser et al. 2014], due to their poor interac-
tion with instruction pipelining and SIMD vectorization. In many
cases, however, such problems can be eliminated by code rewrit-
ing. This can be done by either allocating additional guard bands
around the array to be read [Ragan-Kelley et al. 2013], so condition-
als are not required, or by breaking inner loops into several sections,
so that only the boundary region sections need include condition-
als [Grosser et al. 2014].

We use an approach based on boundary regions, because it does not
require changes to memory layout. Specifically, the remove condi-
tionals transform can be applied to any for loop. Given the loop,
we find a minimal boundary region size r, such that we can prove

6



To appear in ACM TOG 35(6).

all conditionals follow a single path if we are more than r elements
from the edge of the array. Then we split the original loops into
three sections so that the center section is always at least a dis-
tance r from the edge of the array. We do this by using a theorem
prover [De Moura and Bjørner 2008] to find independently for each
conditional i a minimal ri such that the conditional always follows
one path. We then take the maximum over all such ri to obtain
r. In the theorem prover, we use for candidate values of r small
integer constants 1, . . . , 5, and all expressions drawn from the ar-
ray indices. For example, consider the following input pseudocode
which performs a blur operation:

Algorithm 3 Loop remove conditionals input program (blur)

1: for y = 0, . . . , h− 1:
2: for x = 0, . . . , w − 1:
3: color = input(y, x)
4: if x >0:
5: Average color with input(y, x− 1)
6: output(y, x) = color

After applying the loop remove conditionals transformation, we can
prove that the boundary region size is r = 1, and the pseudocode
becomes:

Algorithm 4 Loop remove conditionals result

1: for y = 0, . . . , h− 1:
2: for x = 0:
3: color = input(y, x)
4: if x >0:
5: Average color with input(y, x− 1)
6: output(y, x) = color
7: for x = 1, . . . , w − 2:
8: color = input(y, x)
9: Average color with input(y, x− 1)

10: output(y, x) = color
11: for x = w − 2:
12: color = input(y, x)
13: if x >0:
14: Average color with input(y, x− 1)
15: output(y, x) = color

Vectorize innermost. Many operations in visual computing pro-
grams involve manipulating vectors in 2, 3, or 4 dimensions. The
vectorize innermost transformation allows an array operation to be
converted to hardware-accelerated SIMD if the size of its last (in-
nermost) dimension is a valid SIMD width. Typically, hardware
supports SIMD widths of 2 or 4, and the length 3 case must be han-
dled specially by the previously mentioned array storage rewriting.
This transformation can be applied to any code line with an array
operation.

6 Autotuner

In this section, we describe our offline autotuner, which automat-
ically selects the fastest optimized variant of an unannotated in-
put program. This design was inspired by the high performance
achieved by autotuning systems such as FFTW [Frigo and Johnson
1998] and OpenTuner [Ansel et al. 2014].

We developed the autotuner because it can be challenging — es-
pecially for non-expert programmers — to decide which optimiza-
tions will be most beneficial. For instance, a non-expert program-
mer may find it challenging to determine whether a loop can safely

be parallelized, and if the loop is parallelized, whether the program
will actually be faster.

Our autotuner iteratively tries out a number of automatically pro-
duced variants of the input program, where each variant has pro-
gram lines annotated with the different program transformations de-
scribed in Section 5. For example, a for loop may be annotated with
a parallelize loop transformation, or an array assignment statement
might be annotated with either the loop over implicit variables or
vectorize innermost transformation. Note that each transformation
can only be applied to certain lines, as described in Section 5. For
a given program variant, the autotuner first resolves dependencies
by introducing new transformations if needed so the dependencies
shown in Figure 3 are satisfied. Next, the optimized program is pro-
duced by applying the transformations, and the unit tests are run to
validate that no code generation bugs occurred.

Our autotuner is initialized using a small number of program vari-
ants that constitute good initial guesses, and then uses hill climb-
ing to incrementally change the best variant so as to improve the
run-time. The initial variants we consider are up to 16 in number.
These are constructed by considering all combinations of the fol-
lowing four choices: (1) Either parallelize or do not parallelize all
outermost for loops that have been identified as parallelizable in the
static analysis stage (Section 4.2); (2) Use type specialization for all
functions; (3) Either use or do not use the array storage alteration
transformation throughout the program; and (4) Resolve dependen-
cies in either alphabetical or reverse-alphabetical order. The last
option (4) forces a preference for either vectorizing or looping over
implicit variables when resolving dependencies of the parallelize
loop transformation shown in Figure 3.

Once the fastest variant from the initial guesses has been selected,
hill climbing is used to modify the fastest variant to improve its
run-time. The hill climbing randomly chooses to either: (1) Add a
randomly selected new transformation (with 25% probability); (2)
Mutate an existing transformation by changing its line number or
any internal parameters associated with it (with 20% probability);
(3) Delete an existing transformation (with 10% probability); or (4)
Add a transformation by randomly sampling one from the set of
good initial guesses (40% probability). The hill climbing is con-
tinued until convergence: in our case, we stopped tuning after 40
program variants had been observed.

We note that the user should construct an indicative workload for
profiling that runs in a practical amount of time, so that the tuning
stage is efficient. For example, a user could test a program using a
modest resolution image instead of a 100 megapixel image.

7 Implementation for the Python language

In this section, we provide implementation details for our compiler,
which is currently implemented to accept the language Python.

Our compiler works by reading Python into an abstract syntax tree
(AST), which serves as an intermediate representation for program
transformations. Each program transformation modifies this AST,
by adding type or parallelism annotations, or rewriting code, until
the final syntax tree is output in the Cython [Behnel et al. 2011]
target language. Because the Cython language extends Python, and
therefore is a superset of Python, it is also acceptable to simply
apply no transformations. This will produce a valid program, how-
ever, it will not be any faster.

One limitation of our current implementation is that it is based on
the mainline Python implementation, which includes a global in-
terpreter lock (GIL). This lock essentially permits the Python in-
terpreter to only advance execution in one thread at a time, and

7



To appear in ACM TOG 35(6).

therefore prevents purely Python code from being faster when par-
allelized. Code that is parallelized should therefore be rewritten
as much as possible into pure C code. This is why in Figure 3,
there is a dependency between the parallelize and the loop over im-
plicit variables and vectorize innermost transformations: any par-
allel code block aggressively calls other transformations that help
rewrite code into C.

8 Test suite of applications

To evaluate our compiler, we assessed the performance of 12 ap-
plications from computer vision and graphics. Eleven of these are
shown in Figure 4. The applications are as follows:

• Bilateral grid is an edge-preserving blur [Chen et al. 2007];
• Camera pipeline implements a camera raw photograph de-

coder [Adams et al. 2010];
• Composite composites a foreground image on a background;
• Harris corner implements a sparse interest point detec-

tor [Harris and Stephens 1988];
• Interpolate implements a simple Gaussian-pyramid based

color interpolation [Ragan-Kelley et al. 2013];
• Local Laplacian is an edge-aware filter [Paris et al. 2011];
• Mandelbrot is a Mandelbrot fractal viewer;
• One stage blur implements a single stage blur based on a con-

volution;
• Optical flow computes a simplistic optical flow based only on

a data term, by using PatchMatch [Barnes et al. 2009];
• Pac-Man produces an arcade animation;
• Raytracer is a simple raytracing program; and
• Two-stage blur implements a separable blur.

Applications were implemented by a last year undergraduate and a
first year graduate student. These are students who are good gen-
eral programmers, but are not particularly experienced with writing
efficient graphics code.

Four applications were chosen to facilitate direct comparisons with
the Halide and PolyMage DSLs: bilateral grid, interpolate, local
Laplacian, and two-stage blur.

Three applications were chosen because they cannot easily be im-
plemented in the Halide DSL. Although the dense corner detec-
tor stage of Harris corner can be implemented in Halide, the entire
pipeline cannot be easily implemented. This is because the program
first extracts a list of sparse interest points, but only dense arrays are
supported in Halide. The program then uses scanline rendering to
render the corners as circles, but scanline rendering is challenging
in Halide. Pac-Man cannot be implemented easily in Halide be-
cause it uses rasterization and scan conversion, which require mod-
ifying sparse sets of pixels in loops that track imperative state. The
optical flow based on PatchMatch is difficult to express in Halide
because PatchMatch tracks complex imperative state inside loops,
and the optical flow arrow rasterization routines also require sparse
imperative looping constructs.

9 Evaluation

This section first discusses the results for the applications in our test
suite. Subsequently, we then analyze the separate effect of each pro-
gram transformation in Section 9.1, and assess the trade-offs made
in floating-point precision in Section 9.2.

We determine running times as follows. All times were obtained
on a MacBook 2.5 GHz Intel Core i7 with Haswell microarchitec-
ture, 4 physical cores (8 hyperthreaded), 16 GB RAM, and com-
piled with GCC 5.1. To determine reported time, we ran an experi-
ment where we take the minimum over a set of 10 runs of the pro-
gram. Just-in-time (JIT) compilers were permitted to “warm up”

and finish compiling by being run 10 times additional before any
benchmarking is done. Because the reported times for the applica-
tions with our compiler were often below 1 millisecond, to improve
reported accuracy we repeated the previous timing experiment 50
times and took the mean.

The main results are shown in Table 1. This table presents speed
comparisons between our compiler and several reference compilers.
For our compiler, by default, we run it in “approximating” mode,
which can rewrite 64-bit floats to 32-bit floats. This introduces
small numerical errors on the order of the float precision in the
output. We compare this with our compiler in non-approximating
mode, which disables this conversion, and find that in the median
case, approximating is about 40% faster.

The reference compilers we compare against are the main-
line Python implementation, and four Python compilers: the
Numba [Lam et al. 2015] and PyPy [Bolz et al. 2009] JIT com-
pilers, Pythran [Guelton et al. 2015], and our emulation of un-
Python [Garg and Amaral 2010]. For the unPython comparison,
we found that the provided unPython package did not work reliably
with our applications, so we simply emulated the features of un-
Python by using our compiler and only enabling the parallelism and
type specialization transformations. We observe that our compiler
is frequently orders of magnitude more efficient than other compil-
ers. The most efficient Python compiler was Pythran, which for the
median application was 7.1× slower than our compiler. However,
unlike our compiler, Pythran requires the user to manually annotate
the source code, and it did not successfully compile nearly half of
the applications in the comparison. This was due to the approach
taken by the Pythran compiler where it translates all data structures
into C++ equivalents. This cannot always succeed in complex pro-
grams. Because Numba and PyPy are in widespread use, we next
discuss these two in more depth.

The PyPy JIT compiler nearly always succeeded in running pro-
grams successfully, but for the median application ran 937× slower
than the result of our compiler. The reason that PyPy occasionally
has worse performance than Python is because its array support is
not particularly strong (especially for small arrays).

The widely-used JIT compiler Numba was also successful for most
applications, but in the median case was 38× slower than the result
from our compiler. This is mostly because Numba does not focus
on optimization of small array operations. Our applications ma-
nipulate small arrays of constant size, for example, the RGB color
vectors in the blur applications, but Numba does not perform the
analysis and optimization on small arrays that we do in Sections 4
and 5. This makes Numba emit code with many performance is-
sues, such as reallocating arrays in each loop iteration on the heap,
using arbitrary size array constructors and operations, and failing to
use the constant bounds to accelerate loops. Thus, Numba applica-
tions run orders of magnitudes slower than C in many applications.

We also discovered that Numba works better when all the oper-
ations are in scalar form. For example, in one stage blur, if we
manually edit the input program such that all operations work over
scalar quantities instead of RGB color vectors, the Numba result
becomes close to C in speed when using one thread. However, par-
allelizing Numba loops is currently highly nontrivial, so we used
a single-threaded Numba variant when comparing with C on our 4
core test machine, and it remains about 3× slower than C. Similarly,
there are a few applications that only use scalar operations in inner
loops, such as grayscale composite. For these applications, Numba
has better performance. However, we argue that manual conver-
sion of programs to scalar form is not necessarily desirable. This is
because scalar notation tends to make notation more complex and
error-prone, especially for novice programmers. In contrast, vector

8



To appear in ACM TOG 35(6).

Figure 4: Resulting visuals from each application, as well as the speedup of each application relative to the Python mainline implementation.
Photo credits: (c) modified from original by Tim Green, (g) Karen Arnold and Skitterphoto.

9

https://www.flickr.com/photos/atoach/4983323227
https://pixabay.com/p-220428/
http://skitterphoto.com/?portfolio=sunny-day


To appear in ACM TOG 35(6).

Ours Ours Speedup vs Ours Shorter vs

Application Approx. Ours Ours
Time Python Non- Numba PyPy Pythran unPython* C code Lines vs C vs Cython
[ms] approx.

Bilateral grid 94.4 925× 1.3× 1014× 3425× Error 831× 1.0× 101 2.6× 3.0×
Camera pipeline 0.9 1193× 1.5× 1116× 2864× Error 729× 1.1× 173 1.6× 3.0×
Composite (gray) 0.2 786× 1.2× 1.4× 40× 2.5× 1.3× 1.8× 6 2.3× 3.0×
Composite (RGB) 0.4 1732× 1.5× 72× 1604× 12× 1624× 1.9× 6 2.7× 3.0×
Harris corner 9.6 1223× 1.7× 4.1× 5322× Error 2.0× 2.4× 92 1.2× 3.2×
Interpolate 6.7 437× 1.3× Error 346× Error 354× 12× 39 4.8× 4.8×
Local Laplacian 3.1 558× 1.4× Error 793× Error 368× 2.8× 76 4.8× 3.7×
Mandelbrot 20.0 266× 1.0× 3.0× 3.7× 10× 1.0× 3.1× 29 1.6× 2.8×
One stage blur (gray) 0.4 2281× 1.5× 3.3× 255× 4.1× 1.5× 2.1× 31 1.8× 9.5×
One stage blur (RGB) 0.7 4650× 2.1× 414× 18319× 77× 4306× 2.3× 31 2.5× 2.3×
Optical flow 8.7 931× 1.2× Error Error Error 12× 0.9× 232 1.6× 3.1×
Pac-Man 0.1 273× 1.4× 1.1× 4.9× 1.9× 3.1× 11× 111 1.2× 2.0×
Raytracer 1.6 1159× 1.1× 1189× 1081× Error 1130× 0.8× 49 3.6× 3.1×
Two stage blur (gray) 0.5 713× 1.7× 2.6× 170× 4.4× 2.1× 2.5× 10 2.1× 4.3×
Two stage blur (RGB) 0.8 1816× 2.3× 81× 1582× 24× 1684× 6.0× 10 2.5× 4.3×
Median 1816× 1.4× 38× 937× 7.1× 354× 2.3× 2.3× 3.1×

Table 1: Comparison of the speedups and lines of code for our compiler versus alternatives. We evaluate all applications with our compiler
in approximating mode (64-bit floats can be recast to 32-bit floats), and compare with our compiler in non-approximating mode (64-bit
floats stay 64-bit), the mainline Python implementation and three compilers designed to accelerate Python code: Numba, PyPy, Pythran, and
our emulation of unPython (*We use our compiler infrastructure to mimic the unPython compiler). We also include a comparison against
handwritten, manually ported C code that uses 64-bit precision and has been compiled with a vectorizing C compiler (GCC 5.1.0). We
frequently find significant speedups against these alternatives, despite having less lines of code than handwritten C and the generated Cython
code output by our compiler. The number of lines does not include imports, includes, comments, blank lines, or test lines.

or matrix notation is frequently more concise, general, and because
of its greater abstraction, facilitates additional optimizations such
as vectorization.

Three of our applications produce efficient code when run on both
grayscale and RGB images without any change to the input Python
program. This happens because type specialization identifies dif-
ferent constant array sizes for the third dimension. Thus the col-
orspace, either RGB or grayscale, is noted in the performance eval-
uations. We believe this automatic specialization shows the benefit
of our focus on array- and image-related optimizations.

We also compare against naive handwritten C in Table 1. This C
code was written by the same students who wrote the Python appli-
cations, and had loop parallelism directives manually inserted, and
compiled with maximum optimizations. This C code was intention-
ally written to be in a simplistic form that does not rely on much
knowledge of hardware or optimization, to mimic the style of the
Python code, as well as the style that an inexperienced program-
mer might write code in. For example, images are not explicitly
padded to use 4 channels to facilitate SIMD vectorization. In some
sense this comparison is unfair towards our compiler, because it de-
pends on a human, who must manually port the program between
languages and then parallelize it, whereas our compiler is fully au-
tomatic. However, the results for our compiler are still competitive.

Application Ours time Ours vs Ours vs
Halide PolyMage

Bilateral grid 94 ms 8× slower 4× slower
Interpolate 107 ms 6× slower 2× slower
Local Laplacian 759 ms 8× slower 7× slower
Two stage blur 35 ms 2× slower N/A

Table 2: Speed comparison with Halide [Ragan-Kelley et al. 2013]
and PolyMage [Mullapudi et al. 2015]. All comparisons are made
using multi-threaded builds.

In the median case the C programs are 2.3× slower than the result
of our compiler, but in the worst case, C is up to 12× slower than
our result. The C programs are also in the median case 2.3× longer
in lines of code than the Python programs.

Finally, in Table 2, we compared our application run-times against
the Halide and PolyMage domain-specific languages (DSLs).
Again, in a sense this is an unfair comparison because it requires hu-
mans to port programs from a general-purpose Turing complete lan-
guage (Python) to special-purpose DSLs that are not Turing com-
plete and can only express certain image pipelines over dense ar-
rays. For these applications, which can fit in the compute model of
these DSLs, we find that our compiler generates programs that are 2
to 8× slower than Halide and 2 to 7× slower than PolyMage. Note
that other applications such as Harris corner, Pac-Man, and optical
flow are difficult to express entirely within the Halide DSL. The
difference in running time is primarily due to the loop fusion rules
in Halide and PolyMage, which are difficult to implement as code
transformations in general-purpose imperative programming lan-
guages. Note that the compilers community has investigated loop
fusion rules [Gao et al. 1993; Kennedy and McKinley 1994], but
these are inadequate to gain the full benefits of the fusion and par-
allelization strategies used by Halide and PolyMage. We leave the
integration of these complex strategies into general-purpose, imper-
ative languages for future research. We emphasize that the benefit
of our compiler is in being able to handle arbitrary programs in
an imperative, Turing-complete language of Python, whereas DSLs
are both less widely adopted and have a more limited range of pro-
grams they can express.

In Figure 5, we show the total amount of profiling and compilation
time used when building the code for each application. Neither
the C compiler stage nor our code generator have been particularly
optimized, so we expect these times could be improved.

To aid reproducibility and spur future work, we are releasing our
compiler, applications, and output C code as an open source project.

10



To appear in ACM TOG 35(6).

Application A
PI

ca
ll

re
w

ri
tin

g*
A

rr
ay

st
or

ag
e

al
te

ra
tio

n
L

oo
p

ov
er

im
pl

ic
it

va
ri

ab
le

s*
Pa

ra
lle

liz
e

lo
op

Pr
ea

llo
ca

te
ar

ra
ys

R
em

ov
e

lo
op

co
nd

iti
on

al
s

Ty
pe

sp
ec

ia
liz

at
io

n*
V

ec
to

ri
ze

vs
na

tiv
e

C
*†

V
ec

to
ri

ze
vs

in
te

rp
re

te
d*

†

Bilateral grid 147×0.9× 4.0×2.2×1.0× 0.7×
Camera pipeline 274×1.1× 1.0×2.1×1.0× 1.1×
Composite (gray) 0.9× 2.2× 1.0×321×
Composite (RGB) 0.8× 1.7× 1.0× 1.0×2.3×1334×
Harris corner 1.0× 3.3×1.2× 247×
Interpolate 0.9×0.9× 1.3×1.0× 0.9×1.3× 422×
Local Laplacian 158×1.2× 1.3×1.5×1.0× 4.5×
Mandelbrot 1.0×1.0× 2.9×1.0× 58×
One stage blur (gray) 2.8× 1.4×328×
One stage blur (RGB) 0.8× 2.8× 0.7×4.3×2736×
Optical flow 11× 1.0×1.3×1.0× 47×
Pac-Man 2.3×1.7× 1.0× 58×
Raytracer 138× 2.3×4.1×1.0× 0.8×
Two stage blur (gray) 2.0× 1.6×1.1× 128×
Two stage blur (RGB) 0.9× 1.3×1.0× 0.9×5.3×1335×
Mean 81×1.1× 1.9×2.2×1.0×1.1× 80×3.3×1457×
Max 274×2.0× 4.0×4.1×1.2×1.4×328×5.3×2736×
Table 3: Transformations used by each application. Numbers in
cells indicate the speedups for a particular transformation and ap-
plication, relative to not using the given transformation. Blank cells
indicate a transformation was not chosen by the autotuner. These
speedups are determined by starting from the final program and
then removing a single transformation at a time. Every transforma-
tion is independently useful, and transformations frequently give
compound benefits. *These transformations can rewrite interpreted
Python code into native C. †Vectorize is compared relative to both
non-vectorized yet fully compiled native C, as well as interpreted
Python code. For details, see Section 9.1.

9.1 Assessing the effect of each transformation

This section explores the speed-ups that are obtained from each
particular transformation and each application, as well as aggre-
gate statistics across applications. The resulting speed-ups for each
transformation are shown in Table 3. We see that most transfor-
mations give significant speed-ups. More importantly, we see that
transformations are synergistic so that several transformations can
contribute to the high performance of a given program, and every
transformation contributes to the high performance of some appli-
cation.

The speedups are determined by starting with each final tuned pro-
gram and removing transformations one at a time in an order such
that no dependencies in Figure 3 are broken. If any two transforma-
tions are “tied” such that either could be removed without breaking
dependencies then the transformation with a name that alphabeti-
cally comes first is removed first. Each time a transformation is
removed, the program typically slows down, and thus, a speed-up
for re-inserting the given transformation can be calculated as the
inverse of this slow-down. We assess the effect of vectorization as
a special case, because vectorization requires code that has been
compiled as native C, i.e. without calls to the interpreter. There-
fore, in Table 3, we compare each vectorized program against a
fully compiled but not vectorized variant, that instead loops over
implicit variables (indicated by “vectorize vs native C”), as well as
against the original interpreted Python (indicated by “vectorize vs
interpreted”). For this experiment, the compiler was run in “ap-
proximating” mode, where 64-bit floats can be rewritten to 32-bit
floats.

Table 3 also indicates which transformations are used for each ap-

0
2
4
6
8

10
12
14
16
18
20

Bi
la

te
ra

l g
rid

Ca
m

er
a p

ip
el

in
e

Co
m

po
sit

e 
(g

ra
y)

Co
m

po
sit

e 
(R

G
B)

H
ar

ris
 co

rn
er

In
te

rp
ol

at
e

Lo
ca

l L
ap

la
ci

an

M
an

de
lb

ro
t

O
ne

 st
ag

e 
bl

ur
 (g

ra
y)

O
ne

 st
ag

e 
bl

ur
 (R

G
B)

O
pt

ic
al

 fl
ow

Pa
c-

M
an

Ra
yt

ra
ce

r

Tw
o 

sta
ge

 b
lu

r (
gr

ay
)

Tw
o 

sta
ge

 b
lu

r (
RG

B)

Our Codegen Time C Compiler Time Application Run-time

Figure 5: The total time in minutes spent in the profiling and com-
pilation stages (for both our code generator and the C compiler)
for each application.

plication by the presence of absence of numbers in the cells. Note
the variety of different transformations that are applied to differ-
ent visual computing programs. The richness of this transformation
space permits our compiler to achieve high performance.

Frequently, significant performance gains are due to rewriting code
that calls the Python interpreter to native C code. Four of our trans-
formations help transform interpreted code to native C: type spe-
cialization, API call rewriting, loop over implicit variables, and
vectorize innermost. These are indicated with asterisks in Table 3.
These transformations are greatly facilitated by the tracking of ar-
ray shapes throughout the program by our dependent type analysis
(Section 4.1). Please see the supplemental document for details on
when exactly the rewriting to native C occurs.

9.2 Assessing trade-offs in floating-point precision

This section explores the speed gains encountered during the 64-bit
to 32-bit floating-point precision change, which is a feature enabled
in our compiler’s “approximation mode.” Converting to 32-bit can
reduce memory and speed up run-time, but the precision loss in-
troduced may potentially result in small errors on the order of the
machine epsilon. Manually specifying 32-bit in Python requires
carefully including the primitive data type everywhere that arrays
are used, and the performance impacts of this may not be appar-
ent to novice programmers. On the other hand, some applications
may gain no speed improvement from using lower precision 32-bit
floats, so one may as well use higher precision 64-bit floats. We
thus added the approximation mode to make exploration of this op-
timization trade-off as easy as possible.

In Figure 6, we show the speedup of the 32-bit variant of each appli-
cation relative to the 64-bit variant. We also show the mean speed-
up over all applications. In the scenario where all programs are
limited by memory bandwidth, 32-bit variants require half as much
bandwidth and should be twice as fast as 64-bit variants. However,
in Figure 6 we observe that this is not always the case. This can
be because in compute-bound situations, the speedup due to choos-
ing 32-bit depends on vectorization, because in vector units, two
32-bit instructions can be performed in the same time as one 64-bit
instruction. We note that applications that are compute-bound and
vectorize poorly, such as Mandelbrot and raytracer, have speedups
closer to one.

To examine these relatively small speedups, we looked further into
the compute-limited application Mandelbrot. We investigated the

11



To appear in ACM TOG 35(6).

0

0.5

1

1.5

2

Bi
la

te
ra

l g
rid

Ca
m

er
a p

ip
el

in
e

Co
m

po
sit

e 
(g

ra
y)

Co
m

po
sit

e 
(R

G
B)

H
ar

ris
 co

rn
er

In
te

rp
ol

at
e

Lo
ca

l L
ap

la
ci

an

M
an

de
lb

ro
t

O
ne

 st
ag

e 
bl

ur
 (g

ra
y)

O
ne

 st
ag

e 
bl

ur
 (R

G
B)

O
pt

ic
al

 fl
ow

Pa
c-

M
an

Ra
yt

ra
ce

r

Tw
o 

sta
ge

 b
lu

r (
gr

ay
)

Tw
o 

sta
ge

 b
lu

r (
RG

B)

Application speedup Mean speedup

Figure 6: The speedup of the 32-bit floating-point variant of each
application relative to the 64-bit variant.

instructions from both 32-bit and 64-bit bit programs both in C and
with our compiler. We found that in the innermost loop there are
no vectorization instructions. Thus, we believe that without man-
ual intervention, our C compiler (GCC 5.1) is not able to vectorize
programs with complicated logic in their innermost loops. We con-
clude that compute-limited programs will only see a larger speedup
in 32-bit mode relative to 64-bit if the compiler’s vectorizer is suf-
ficiently capable. We note that better vectorization is possible in
C-like compilers such as ispc [Pharr and Mark 2012] that use the
single program, multiple data programming model.

10 Discussion

Our compiler approach has a few important limitations. First of all,
the dependent type analysis expects that any built-in or third-party
functions implemented in foreign languages (such as C) are anno-
tated with “dependent type functions,” as described in Section 4.1.
If this is not done then types in the program might have to be manu-
ally annotated by the programmer, which is inconvenient. In future
work, it would be interesting to explore automatically generating
these dependent type functions.

Our compiler currently does not target graphics processing units
(GPUs). A compiler that targets GPUs might be able to incorpo-
rate interesting optimizations such as placing parallel workloads on
both the CPU and the GPU, using half-precision floating point arith-
metic, or vectorizing using the large GPU vector widths.

The observations we used for visual computing programs might
also be applied to similar domains that involve accelerating vector
and matrix operations in 2, 3, and 4 dimensions, such as physical
and acoustical simulation, and scientific visualization.

In conclusion, our compiler framework allows speedups of orders
of magnitude to be obtained over state-of-the-art compilers for
Python. It does this by specializing for the domain of visual com-
puting, while keeping the input language to be a general-purpose,
Turing-complete, dynamically-typed language. Unlike DSLs, we
can express a more rich variety of visual computing programs. The
resulting programs are both shorter and faster than their C equiv-
alents, and our programmers ran into fewer complicated memory
management issues than when they were writing the C compar-
isons. We believe that the ideas contained within our compiler
framework will be able to impact compilers for other dynamic lan-
guages and open up high-performance visual computing to broader
audiences.

Acknowledgements

We thank our anonymous reviewers for helpful feedback. Thanks to
the photographers for licensing photos under Creative Commons or
public domain, as indicated in figure captions. This project was par-
tially funded by the NSF grants HCC 1011444 and SHF 1619123.

References
ADAMS, A., TALVALA, E.-V., PARK, S. H., JACOBS, D. E.,

AJDIN, B., GELFAND, N., DOLSON, J., VAQUERO, D., BAEK,
J., TICO, M., ET AL. 2010. The frankencamera: an experimen-
tal platform for computational photography. In ACM Transac-
tions on Graphics (TOG), vol. 29, ACM, 29.

AKERET, J., GAMPER, L., AMARA, A., AND REFREGIER, A.
2015. Hope: A python just-in-time compiler for astrophysical
computations. Astronomy and Computing 10, 1–8.

AMMONS, G., AND LARUS, J. R. 1998. Improving data-flow
analysis with path profiles. In ACM PLDI.

ANSEL, J., KAMIL, S., VEERAMACHANENI, K., RAGAN-
KELLEY, J., BOSBOOM, J., O’REILLY, U.-M., AND AMA-
RASINGHE, S. 2014. Opentuner: An extensible framework for
program autotuning. In Proceedings of the 23rd international
conference on Parallel architectures and compilation, ACM.

AUGUSTSSON, L. 1998. Cayennea language with dependent types.
In ACM SIGPLAN Notices, vol. 34, ACM, 239–250.

BALL, T., MATAGA, P., AND SAGIV, S. 1998. Edge profiling
versus path profiling: The showdown. In POPL ’98, 134–148.

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. 2009. PatchMatch: A randomized correspondence
algorithm for structural image editing. ACM Transactions on
Graphics 28, 3, 24:1–24:10.

BEHNEL, S., BRADSHAW, R., CITRO, C., DALCIN, L., SELJE-
BOTN, D. S., AND SMITH, K. 2011. Cython: The best of both
worlds. Computing in Science & Engineering 13, 2, 31–39.

BERGSTRA, J., BREULEUX, O., BASTIEN, F., LAMBLIN, P.,
PASCANU, R., DESJARDINS, G., TURIAN, J., WARDE-
FARLEY, D., AND BENGIO, Y. 2010. Theano: A cpu and gpu
math compiler in python. In Proc. 9th Python in Science Conf.

BEZANSON, J., KARPINSKI, S., SHAH, V. B., AND EDELMAN,
A. 2012. Julia: A fast dynamic language for technical comput-
ing. arXiv preprint arXiv:1209.5145.

BLUME, W., DOALLO, R., RAUCHWERGER, L., TU, P., EIGEN-
MANN, R., GROUT, J., HOEFLINGER, J., LAWRENCE, T., LEE,
J., PADUA, D., ET AL. 1996. Parallel programming with polaris.
Computer, 12, 78–82.

BOLZ, C. F., CUNI, A., FIJALKOWSKI, M., AND RIGO, A. 2009.
Tracing the meta-level: Pypy’s tracing jit compiler. In Workshop
on Implementation, Compilation, Optimization.

BUSE, R. P. L., AND WEIMER, W. 2009. The road not taken: Esti-
mating path execution frequency statically. In 31st International
Conference on Software Engineering, ICSE 2009.

CANN, D. C., AND EVRIPIDOU, P. 1995. Advanced array opti-
mizations for high performance functional languages. Parallel
and Distributed Systems, IEEE Transactions on 6, 3, 229–239.

CHEN, J., PARIS, S., AND DURAND, F. 2007. Real-time edge-
aware image processing with the bilateral grid. In ACM Trans-
actions on Graphics (TOG), vol. 26, ACM, 103.

12



To appear in ACM TOG 35(6).

CONDIT, J., HARREN, M., ANDERSON, Z., GAY, D., AND NEC-
ULA, G. C. 2007. Dependent types for low-level programming.
In Programming Languages and Systems. Springer, 520–535.

CORNWALL, J. L., HOWES, L., KELLY, P. H., PARSONAGE, P.,
AND NICOLETTI, B. 2009. High-performance simt code gener-
ation in an active visual effects library. In Proceedings of the 6th
ACM conference on Computing frontiers, ACM, 175–184.

DE MOURA, L., AND BJØRNER, N. 2008. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction and Analy-
sis of Systems. Springer, 337–340.

DEVITO, Z., HEGARTY, J., AIKEN, A., HANRAHAN, P., AND
VITEK, J. 2013. Terra: a multi-stage language for high-
performance computing. In ACM SIGPLAN Notices, vol. 48.

DUFOUR, M., AND COUGHLAN, J., 2013. Shedskin: an
experimental (restricted-python)-to-c++ compiler. https://
code.google.com/p/shedskin/wiki/docs.

ELLIOTT, C. Functional image synthesis. In Proceedings Bridges
2001, Mathematical Connections in Art, Music, and Science.

FRIGO, M., AND JOHNSON, S. G. 1998. Fftw: An adaptive soft-
ware architecture for the fft. In 1998 IEEE Acoustics, Speech
and Signal Processing, vol. 3.

FRIGO, M., AND STRUMPEN, V. 2005. Cache oblivious stencil
computations. In Proc. 19th conf. Supercomputing, ACM.

GAO, G., OLSEN, R., SARKAR, V., AND THEKKATH, R. 1993.
Collective loop fusion for array contraction. In Languages and
Compilers for Parallel Computing. Springer, 281–295.

GARG, R., AND AMARAL, J. N. 2010. Compiling python to a hy-
brid execution environment. In Proceedings of the 3rd Workshop
on GPGPU, ACM.

GRAHAM, S. L., KESSLER, P. B., AND MCKUSICK, M. K. 1982.
gprof: a call graph execution profiler (with retrospective). In
ACM SIGPLAN PLDI.

GROSSER, T., COHEN, A., HOLEWINSKI, J., SADAYAPPAN, P.,
AND VERDOOLAEGE, S. 2014. Hybrid hexagonal/classical
tiling for gpus. In Proc. IEEE/ACM Symposium on Code Gener-
ation and Optimization.

GUELTON, S., BRUNET, P., AMINI, M., MERLINI, A., CORBIL-
LON, X., AND RAYNAUD, A. 2015. Pythran: Enabling static
optimization of scientific python programs. Computational Sci-
ence & Discovery 8, 1, 014001.

HARMAN, M., AND JONES, B. F. 2001. Search-based software
engineering. Information and Software Technology 43, 14.

HARRIS, C., AND STEPHENS, M. 1988. A combined corner and
edge detector. In Alvey vision conference, vol. 15, Citeseer, 50.

HOLEWINSKI, J., POUCHET, L.-N., AND SADAYAPPAN, P. 2012.
High-performance code generation for stencil computations on
gpu architectures. In Proceedings of the 26th ACM international
conference on Supercomputing, ACM, 311–320.

KARCHER, T., AND PANKRATIUS, V. 2011. Run-time automatic
performance tuning for multicore applications. In Euro-Par 2011
Parallel Processing. Springer, 3–14.

KENNEDY, K., AND MCKINLEY, K. S. 1994. Maximizing loop
parallelism and improving data locality via loop fusion and dis-
tribution. Springer.

KRISHNAMOORTHY, S., BASKARAN, M., BONDHUGULA, U.,
RAMANUJAM, J., ROUNTEV, A., AND SADAYAPPAN, P. 2007.
Effective automatic parallelization of stencil computations. In
ACM Sigplan Notices, vol. 42, ACM, 235–244.

LAM, S. K., PITROU, A., AND SEIBERT, S. 2015. Numba: a
llvm-based python jit compiler. In Proceedings of Workshop on
LLVM Compiler Infrastructure in HPC, ACM.

MORAJKO, A., MARGALEF, T., AND LUQUE, E. 2007. Design
and implementation of a dynamic tuning environment. Journal
of Parallel and Distributed Computing 67, 4, 474–490.

MULLAPUDI, R. T., VASISTA, V., AND BONDHUGULA, U.
2015. Polymage: Automatic optimization for image process-
ing pipelines. In Proc. Conference on Architectural Support for
Programming Languages and Operating Systems, ACM.

MULLAPUDI, R. T., ADAMS, A., SHARLET, D., RAGAN-
KELLEY, J., AND FATAHALIAN, K. 2016. Automatically
scheduling halide image processing pipelines. In Proc. ACM
SIGGRAPH.

PARIS, S., HASINOFF, S. W., AND KAUTZ, J. 2011. Local lapla-
cian filters: edge-aware image processing with a laplacian pyra-
mid. ACM Trans. Graph. 30, 4, 68.

PHARR, M., AND MARK, W. R. 2012. ispc: A spmd compiler
for high-performance cpu programming. In Innovative Parallel
Computing (InPar), 2012, IEEE, 1–13.

Quora: How many photos are uploaded to facebook every
day? https://www.quora.com/How-many-photos-
are-uploaded-to-Facebook-each-day.

RAGAN-KELLEY, J., BARNES, C., ADAMS, A., PARIS, S., DU-
RAND, F., AND AMARASINGHE, S. 2013. Halide: A language
and compiler for optimizing parallelism, locality and recompu-
tation in image processing pipelines. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation.

SALIB, M. 2004. Starkiller: A static type inferencer and compiler
for Python. PhD thesis, Citeseer.

SHANTZIS, M. A. 1994. A model for efficient and flexible image
computing. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, ACM, 147–154.

SYED-ABDUL, S., FERNANDEZ-LUQUE, L., JIAN, W.-S., LI,
Y.-C., CRAIN, S., HSU, M.-H., WANG, Y.-C., KHAN-
DREGZEN, D., CHULUUNBAATAR, E., AND NGUYEN, P. A.
2013. Misleading health-related information promoted through
video-based social media: anorexia on youtube. Journal of med-
ical Internet research 15, 2, e30.

TALBOT, J., DEVITO, Z., AND HANRAHAN, P. 2012. Riposte:
a trace-driven compiler and parallel vm for vector code in r. In
Proceedings of the 21st international conference on Parallel ar-
chitectures and compilation techniques, ACM, 43–52.

TANG, Y., CHOWDHURY, R. A., KUSZMAUL, B. C., LUK, C.-K.,
AND LEISERSON, C. E. 2011. The pochoir stencil compiler.
In Proceedings of the twenty-third annual ACM symposium on
Parallelism in algorithms and architectures, ACM, 117–128.

WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. 2001.
Automated empirical optimizations of software and the atlas
project. Parallel Computing 27, 1, 3–35.

XI, H., AND PFENNING, F. 1998. Eliminating array bound check-
ing through dependent types. ACM SIGPLAN Notices 33, 5,
249–257.

XI, H., AND PFENNING, F. 1999. Dependent types in practical
programming. In Proc. 26th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, ACM.

13

https://code.google.com/p/shedskin/wiki/docs
https://code.google.com/p/shedskin/wiki/docs
https://www.quora.com/How-many-photos-are-uploaded-to-Facebook-each-day
https://www.quora.com/How-many-photos-are-uploaded-to-Facebook-each-day

