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Abstract
This is a supplemental document to the paper “Approximate Program Smoothing Using Mean-Variance Statistics,with Appli-
cation to Procedural Shader Bandlimiting." We present in this supplemental document additional plots of time and error for
shaders, formulas, derivations, and proofs. Note that the main paper and supplemental use a single consistent set of references.

8. Time and Error Plots for Planar Geometry

Please see Figure 7 on the next page, where we present time and
error plots for all 21 shaders that were defined in the main paper,
applied to planar geometry.

9. Table of Smoothed Formulas

In Table 3, we show a table of functions and their correspond-
ing convolutions with box and Gaussian kernels. These are needed
for the approximations we developed in the main paper. This
table can be viewed as an extension of the table presented in
Dorn et al. [DBLW15], with some errors fixed. Note that in particu-
lar, for each function f (x), we report not only the result of smooth-
ing f (x) but also smoothing f 2(x) (e.g. if we report cos(x) then we
also report cos2(x)). This is needed to determine the standard de-
viations output by a given compute stage for the adaptive Gaussian
approximation rule.

In Table 3, we give that bandlimiting xn by a Gaussian is a gen-
eralized Hermite polynomial He[α]n (x). This can be derived from
a property of generalized Hermite polynomials: the nth noncentral
moment of a Gaussian distribution X with expected value µ and
variance σ is a generalized Hermite polynomial [Wik17]:

He[α]n (x) =
b n

2 c

∑
k=0

n!
(n−2k)!k!

(−2)−kxn−2k
α

k (12)

10. Multivariate Smoothed Functions

In this section, we extend the analysis for the adaptive Gaussian
rule from the main paper Section 4.2 to some additional multivari-
ate functions. We explain how to derive formulas for modulo, com-
parisons, and a ternary selection function.

The modulo function, fmod(a,b) = a%b, can be rewritten as

fmod(a,b) = b · fract( a
b ). Here, fract(x) is the fractional part of x.

We make the simplifying assumption that the second argument b of
mod is an ordinary (non-random) variable (so σB = 0), to obtain:

µ2
mod =µB · f̂ract(

µA
µB

,
σ

2
A

µ2
B
)

σmod =µ2
B · f̂ract2(

µA
µB

,
σ

2
A

µ2
B
)−µ2

mod

(13)

Comparison functions (>,≥,<,≤) are approximated by con-
verting them to univariate functions including the Heaviside step
function H(x). As an example, the function greater than (>) can be
rewritten as f>(a,b) = H(a−b).

One other important multi-variate function we approximated is
the ternary select(a,b,c) function, which returns b if a is non-
zero, otherwise c. We approximated this in the same manner as
Dorn et al. [DBLW15] as a linear interpolation based on binary op-
erators: select(a,b,c) = a ·b+(1−a) · c.

11. Correlation Coefficients for Multivariate Functions

In this section, we describe rules to compute the correlation co-
efficient ρ, which is briefly discussed in Section 4.2. Specifically,
we are given a binary function f (a,b), which receives two inputs
a and b, with associated random variables A and B, respectively.
We discuss the following two rules: a) assume ρ is constant and
estimate by sampling and b) compute ρ under the assumption that
computations are affine.

Estimate ρ by sampling. In a training stage, we use n samples
to approximate ρ of two random variables A and B. The samples
drawn from these two distributions are represented as ai and bi with
corresponding sample mean a and b. Thus, ρ can be estimated by:

ρ =
∑

n
i=1(ai−a)(bi−b)√

∑
n
i=1(ai−a)2

√
∑

n
i=1(bi−b)2

(14)
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Figure 7: Time versus error plots for the 21 shaders defined in the body of the paper, and applied to planar geometry. Here we show the
Pareto frontier of program variants that optimally trade off running time and L2 error. We show results for our method, Dorn et al [DBLW15],
supersampling with varying numbers of samples, and the input shader without antialiasing. Note that our approach typically has significantly
less error than Dorn et al [DBLW15] and is frequently an order of magnitude faster than supersampling for comparable error.

Estimate ρ by an affine assumption. When we calculate ρ un-
der this rule, we assume the variables a and b input to f are affine
transformations of the variables x1, ..., xn which are input to the
program. Under this assumption, a and b can be expressed as:

a = ac +
n

∑
i=1

aixi, b = bc +
n

∑
i=1

bixi (15)

In Equation (15), ai and bi are coefficients of the affine transfor-
mation, and ac and bc end up not mattering for the ρ computation,
so we ignore these constants. In our implementation, we find ai
and bi by taking the gradient, via the automatic differentiation of
the expression nodes a and b with respect to the inputs xi. Here ρ is
computed as:

ρ =
∑

n
i=1 aibi√

∑
n
i=1 a2

i

√
∑

n
i=1 b2

i

(16)

12. Smoothing Result for Periodic Functions

In this section, we derive a convenient formula that gives the ban-
dlimited result for any periodic function if its integral within a sin-
gle period is known. We extend the analysis of fract() made by
Dorn et al. [DBLW15] to any periodic function. We use Heckbert’s
technique of repeated integration [Hec86] to derive the convolution
of a periodic function with a box kernel.

Specifically, we assume the periodic function f (x) has period T
and its first and second integrals within one period are also known.
These are denoted as Fp(x) and Fp2(x), respectively.

Fp(x) =
∫ x

0
f (u)du

Fp2(x) =
∫ x

0
Fp(u)du

x ∈ [0,T )

(17)

Using Equation (17), we derive the first and second integral of
f (x) as follows.

F(x) =
∫ x

0
f (u)du

=
(⌊ x

T

⌋
+1
)
·Fp(T )−

∫ T

x−T ·b x
T c

f (u)du

=
(⌊ x

T

⌋
+1
)
·Fp(T )−Fp(T )+Fp

(
x−T ·

⌊ x
T

⌋)
=
⌊ x

T

⌋
·Fp(T )+Fp

(
x−T ·

⌊ x
T

⌋)
(18)
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F2(x) =
∫ x

0
F(u)du

=
∫ x

0

⌊ u
T

⌋
·Fp(T )du+

∫ x

0
Fp(u−T ·

⌊ u
T

⌋
)du

=Fp(T ) ·T
b x

T c−1

∑
i=0

i+
(

x−T
⌊ x

T

⌋)
·
⌊ x

T

⌋
·Fp(T )+⌊ x

T

⌋
·Fp2(T )+Fp2

(
x−T ·

⌊ x
T

⌋)
=Fp(T ) ·

(
T · (q−1) ·q

2
+(x−T ·q) ·q

)
+

Fp2(T ) ·q+Fp2(x−T ·q)

Here, q =
⌊ x

T

⌋
.

(19)

Using Heckbert’s result, the convolution of the periodic function
f (x) with a box kernel that has support [−

√
3σ,
√

3σ] (correspond-
ing to a uniform kernel with standard deviation σ) is:

f̂ (x,σ) =
F(x+

√
3σ)−F(x+

√
3σ)

2
√

3σ
(20)

The convolution of the periodic function f (x) with a tent kernel
that has support [−

√
6σ,
√

6σ] (corresponding to a uniform kernel
with standard deviation σ) is:

f̂ (x,σ) =
F2(x+

√
6σ)−2 ·F2(x)+F2(x−

√
6σ)

6σ2 (21)

13. Proof of Second Order Approximation for a Single
Composition

Here we show for a univariate function, applying function compo-
sition using our adaptive Gaussian approximation from Section 4.2
is accurate up to the second order in standard deviation σ. Sup-
pose we wish to approximate the composition of two functions:
f (x) = f2( f1(x)), where f1, f2 : R → R. Assume the input ran-
dom variable is X0 ∼ N (x,σ2): the Gaussian kernel centered at
x. The output from f1 is an intermediate value in the computation:
we can represent this with another random variable X1 = f1(X0).
Similarly, the output random variable X2 = f2(X1). We conclude
that f (X0) = f2( f1(X0)) = f2(X1) = X2.

We apply Equation (6) and Equation (7) to f1, and obtain the
following mean and standard deviation.

µX1 = f̂1(x,σ
2) = f1(x)+

1
2

σ
2 f

′′

1 (x)+O(σ4)

f̂ 2
1 (x,σ

2) = f 2
1 (x)+

1
2

σ
2 ∂

2

∂x2 ( f 2
1 (x))+O(σ4)

= f 2
1 (x)+

1
2

σ
2(2 f1 f

′′

1 +2( f
′

1)
2)(x)+O(σ4)

σ
2
X1 = f̂ 2

1 (x,σ
2)− f̂1(x,σ

2)2

= σ
2( f

′

1)
2(x)+O(σ4)

(22)

Using our composition rule, X1 is approximated as a normal dis-
tribution using the mean and standard deviation calculated from
Equation (22). That is, we approximate X1 as being distributed as

N (µX1 ,σ
2
X1
). Similarly, µX2 , which is the output we care about, can

be computed based on Equation (7), Equation (22), and repeated
Taylor expansion in σ around σ = 0.

µX2 = f̂2( f̂1(x,σ
2),σ2

X1)

= f2( f1(x)+
1
2

σ
2 f

′′

1 (x)+O(σ4))+

1
2

σ
2
X1 f

′′

2 ( f̂1(x,σ
2))+O(σ4

X1)

= f (x)+
1
2

σ
2 f

′

2( f1(x)) f
′′

1 (x)+

1
2

σ
2 f

′′

2 ( f1(x))( f
′

1)
2(x)+O(σ4)

= f (x)+
1
2

σ
2 f

′′
(x)+O(σ4)

(23)

Comparing Equation (23) with Equation (7), the function com-
position in our framework agrees up to the second order term in the
Taylor expansion.

We conclude that our approximation is accurate up to the second
order in standard deviation for a single composition of univariate
functions. The same property for additional compositions of uni-
variate functions can be shown by induction.

14. Short Tuning

In Figure 8, we show 5 results for short tuning where the tuner has
run for limited time. We log tuner output at the end of each genera-
tion, and use the first available results after the tuner has run for 10
minutes. We compare the results of short tuning with full tuning:
the tuner is run by default for 20 generations. We described how
we choose the result for our full tuning in Section 7.1. Similarly,
we selected a result for our short tuning with sufficiently low error.

15. Geometry Transfer

In Figure 9, we show 6 results for geometry transfer: we tune
shaders on one geometry, and use the Pareto frontier of tuned pro-
gram variants to render the same shader on a different geometry.
We compare the results of geometry transfer with directly training
the same geometry, as is described in Section 7. We described how
we choose the result of our method, Dorn et al. [DBLW15] and su-
persampling in Section 7.1. We then selected a result for geometry
transfer that has time and error that is comparable to the directly
trained result we previously selected.
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Figure 8: Results for short tuning. Shaders are tuned for about 10 minutes (“Our Short Tuning”) and compared to tuning for 20 generations
(“Our Full Tuning”). Note that many aliasing patterns can be reduced after short tuning.
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Table 3: A table of univariate functions, and their corresponding bandlimited result, using a box kernel B and a Gaussian G. The box kernel
is the PDF of the uniform random variable U [−

√
3σ,
√

3σ]. The Gaussian kernel is the PDF of the random variableN (0,σ2). Each random
variable has standard deviation σ. We define sinc(x) = sin(x)/x, and the Heaviside step function H(x) is 0 for x ≤ 0 and 1 for x positive.
Note that functions with undefined regions, such as xp for negative or fractional p have σ limited as described in Section 4.4.

Function f (x) Bandlimited with box kernel: f̂ B(x,σ2) Bandlimited with Gaussian kernel: f̂ G(x,σ2)

xp, p 6=−1 1√
12σ(p+1)

[
(x+
√

3σ)p+1− (x−
√

3σ)p+1
]

He[−σ
2]

p (x)

x−2 (x2−3σ
2)−1

x−1 1√
12σ

log
∣∣∣ x+
√

3σ

x−
√

3σ

∣∣∣
x x x
x2 x2 +σ

2 x2 +σ
2

x3 x3 +3xσ
2 x3 +3xσ

2

x4 x4 +6x2
σ

2 + 9
5 σ

4 x4 +6x2
σ

2 +3σ
4

x5 x5 +10x3
σ

2 +9xσ
4 x5 +10x3

σ
2 +15xσ

4

x6 x6 +15x4
σ

2 +27x2
σ

4 + 27
7 σ

6 x6 +15x4
σ

2 +45x2
σ

4 +15σ
6

x7 x7 +21x5
σ

2 +63x3
σ

4 +27xσ
6 x7 +21x5

σ
2 +105x3

σ
4 +105xσ

6

x8 x8 +28x6
σ

2 +126x4
σ

4 +108x2
σ

6 +9σ
8 x8 +28x6

σ
2 +210x4

σ
4 +420x2

σ
6 +105σ

8

sin(x) sin(x)sinc(
√

3σ) sin(x)e−
σ

2
2

cos(x) cos(x)sinc(
√

3σ) cos(x)e−
σ

2
2

tan(x) −1√
12σ

log
∣∣∣ cos(x+

√
3σ)

cos(x−
√

3σ)

∣∣∣
sinh(x) 1√

12σ
(cosh(x+

√
3σ)− cosh(x−

√
3σ)) 1

2 (e
x+ 1

2 σ
2
− e−x+ 1

2 σ
2
)

cosh(x) 1√
12σ

(sinh(x+
√

3σ)− sinh(x−
√

3σ)) 1
2 (e

x+ 1
2 σ

2
+ e−x+ 1

2 σ
2
)

tanh(x) 1√
12σ

(log(cosh(x+
√

3σ))− log(cosh(x−
√

3σ)))

sinh2(x) 1
8
√

3σ
(−4
√

3σ+ sinh(2
√

3σ−2x)+ sinh(2
√

3σ+2x))

cosh2(x) 1
8
√

3σ
(4
√

3σ+ sinh(2
√

3σ−2x)+ sinh(2
√

3σ+2x))

tanh2(x) 1
2
√

3σ
(2
√

3σ− tanh(
√

3σ− x)− tanh(
√

3σ+ x))

ex 1√
12σ

(
ex+
√

3σ− ex−
√

3σ
)

ex+ 1
2 σ

2

sin2(x) 1
2 −

1
2 cos(2x)sinc(

√
12σ) 1

2 −
1
2 cos(2x)e−2σ

2

cos2(x) 1
2 +

1
2 cos(2x)sinc(

√
12σ) 1

2 +
1
2 cos(2x)e−2σ

2

tan2(x) 1√
12σ

(
tan(x+

√
3σ)− tan(x−

√
3σ)
)
−1

H(x)


0 x≤−

√
3σ

x
2
√

3σ
+ 1

2 −
√

3σ≤ x≤
√

3σ

1 x≥
√

3σ

1
2 (1+ erf x√

2σ
)

fract(x) 1√
48σ

(fract2(x+
√

3σ)+
⌊
x+
√

3σ
⌋
−

fract2(x−
√

3σ)−
⌊
x−
√

3σ
⌋
)

fract2(x) 1√
108σ

(fract3(x+
√

3σ)+
⌊
x+
√

3σ
⌋
−

fract3(x−
√

3σ)−
⌊
x−
√

3σ
⌋
)

bxc x− f̂ract(x)

bxc2 x̂2 + f̂ract2(x)−F(x+
√

3σ)+F(x−
√

3σ)

where F(x) = 2( bxc3 +
bxc(bxc−1)

4 +
bxcf̂ract

2
(x)

2 +
f̂ract

3
(x)

3 )

dxe x+ f̂ract(−x)

dxe2 b̂−xc2
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Ground Truth Our Result Our Transfer Result Dorn et al. 2015 Supersampling
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Figure 9: Results for geometry transfer. Shaders trained on a source geometry are applied to a target geometry (“Our Transfer Result")
and compared to re-training on the target geometry. Note that both transfer between curved geometries and from curved geometry to plane
give good antialiasing results and have significant less error than Dorn et al. [DBLW15]. Note also that transfer results between curved
geometries are typically competitive to direct training both in time and error.
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