EUROGRAPHICS 2018 / D. Gutierrez and A. Sheffer Volume 37 (2018), Number 2
(Guest Editors)

Approximate Program Smoothing Using Mean-Variance Statistics,
with Application to Procedural Shader Bandlimiting

Y. Yz;lng1 and C. Barnes'?

University of Virginia, USA 2 Adobe Research

(a) Ground Truth (b) No Antialiasing (c) Our Result (d) Dorn et al. 2015 (e) Supersampling

b bl]

2115 ms, L2 error: 0.117 4041 ms (2x), L? error: 0.021 1892 ms (1x), L2 error: 0.095 3659 ms (2x), L2 error: 0.072

Figure 1: Our paper gives a novel compiler framework for smoothing programs. Here we show how our smoothing framework can be
applied to bandlimiting (antialiasing) procedural shader programs. In (a) is the ground truth result for a brick shader, estimated by using
1000 samples; (b) is the aliased result due to naively evaluating the original shader program; (c) is our result; (d) is the result of previous
work; and (e) is supersampling, chosen to use comparable run-time as our result. The L? errors are reported in SRGB color space, with the
inset heatmap depicting per-pixel L? error. Our result has significantly less error, noise, and aliasing than other approaches.

Abstract

We introduce a general method to approximate the convolution of a program with a Gaussian kernel. This results in the program
being smoothed. Our compiler framework models intermediate values in the program as random variables, by using mean and
variance statistics. We decompose the input program into atomic parts and relate the statistics of the different parts of the
smoothed program. We give several approximate smoothing rules that can be used for the parts of the program. These include
an improved variant of Dorn et al. [DBLW15], a novel adaptive Gaussian approximation, Monte Carlo sampling, and compactly
supported kernels. Our adaptive Gaussian approximation handles multivariate Gaussian distributed inputs, gives exact results
for a larger class of programs than previous work, and is accurate to the second order in the standard deviation of the kernel for
programs with certain analytic properties. Because each expression in the program can have multiple approximation choices, we
use a genetic search to automatically select the best approximations. We apply this framework to the problem of automatically
bandlimiting procedural shader programs. We evaluate our method on a variety of geometries and complex shaders, including
shaders with parallax mapping, animation, and spatially varying statistics. The resulting smoothed shader programs outperform
previous approaches both numerically and aesthetically.

CCS Concepts
eSoftware and its engineering — Compilers; eComputing methodologies — Rendering;

1. Introduction Procedural shaders are important in rendering systems, because
In many contexts, functions that have aliasing or noise could they can be used to flexibly specify material appearance in virtual
be viewed as undesirable. In this paper, we develop a general scenes [AMHHO8]. In this work we focus on purely procedural
compiler-driven machinery to approximately smooth arbitrary pro- shaders that do not contain texture lookups or other references to
grams, and thereby suppress aliasing or noise. We then apply this buffers. One visual error that can appear in procedural shaders is
machinery to bandlimit procedural shader programs. In order to aliasing. Aliasing artifacts occur when the sampling rate is below
motivate our approach concretely by an application, we first dis- the Nyquist limit [Cro77]. There are two more conventional ap-
cuss how procedural shaders may be bandlimited, and then return proaches used to reduce such aliasing: supersampling and prefilter-
to our smoothing compiler. ing. We discuss these before discussing our smoothing compiler.

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Input Decomposition’ Approximate Genetic Search
Program (83) Smoothing Rules (§4) (§5)
« Dorn et al. (§4.1) { Optional: Sm°t°‘hted
e . q q i g : outpu!
in() sin() Adaptive Gaussian (§4.2) i Quality || program
) * Monte Carlo (§4.3) § Improvement |
 Compact Kernels (§4.4) . (§6))

Figure 2: An overview of our compiler framework. The components
of our framework are discussed in the introduction.

Supersampling increases the spatial sampling rate, so that the
output value for each pixel is based on multiple samples. The sam-
pling rate can be uniform across the image. The sampling rate can
also be chosen adaptively based on measurements such as local
contrast [DW, Mita, HTW*08, Mitb]. This approach in the limit re-
covers the ground truth image, but can be time-consuming due to
requiring multiple samples per pixel.

Prefiltering typically stores precomputed integrals in mipmaps
[Wil83] or summed area tables [Cro84]. This approach offers the
benefit of accurate solutions with a constant number of operations,
provided that the shading function can be spatially tiled or other-
wise represented on a compact domain. However, in practice many
interesting shaders do not tile, so this limits the applicability of
this method. Further, prefiltering increases storage requirements
and may replace inexpensive computations with more expensive
memory accesses. This approach is not practical for functions of
more than two or three variables because memory costs scale expo-
nentially.

An alternative strategy is to construct a bandlimited variant of the
shading function by symbolic integration. This can be expressed
by convolving the shading function with a low-pass filter [NRS82].
Exact analytic band-limited formulas are known for some special-
ized functions such as noise functions [LLDDO09]. In most cases,
however, the shader developer must manually calculate the convo-
lution integral. However, frequently the integrals cannot be solved
in closed form, which limits this strategy.

We take a different approach than most previous work, by using
a compiler framework to smooth an input program. We show an
overview of this process in Figure 2. Our goal is to smooth an ar-
bitrary input function represented as a program, by approximately
convolving it with a Gaussian filter. This convolution could be mul-
tidimensional: for shader programs, the dimension is typically 2D
for spatial coordinates. We would also like the output program to
be as efficient as possible. The compiler takes the program as in-
put, and decomposes it into atomic parts whose bandlimited solu-
tions are easier to obtain (Section 3). We then relate the statistics
of the different atomic parts, under the desired smoothing process.
Specifically, we treat each intermediate value in the computation as
a random variable with a certain probability distribution. We use
mean and variance statistics to model these random variables. A
key insight in our work is that we derive more accurate rules for
modeling the variance in addition to the mean statistics considered
in the previous work of Dorn et al. [DBLW 15]. Each part of the pro-
gram accepts one or more inputs, which are assumed to be Gaus-
sian distributed according to these mean and variance statistics, and

outputs a single variable, which is also assumed to be Gaussian dis-
tributed. In this manner, we can smooth arbitrary programs that
operate over floating-point numbers. Our approach can be applied
to bandlimit shader programs, because we take as input an original
shader that may have aliasing, and produce as output bandlimited
approximations that have been convolved with the Gaussian kernel.

For the different atomic parts of the input program, we need rules
for how to approximate the mean and variance of the smoothed re-
sult. The previous work of Dorn et al. [DBLW15] has one such
rule. We improve the accuracy of this rule, relate it to our frame-
work, and explain a class of functions (or programs) for which it
gives exact results (Section 4.1). We also introduce new rules that
are more precise, but also more complex to compute. Specifically,
we develop a novel adaptive Gaussian approximation (Section 4.2).
This approximation handles multivariate Gaussian distributed in-
puts, is exact for a larger class of functions than previous work, and
accurate to the second power of the standard deviation for functions
with certain analytic properties. We also relate Monte Carlo sam-
pling (Section 4.3) to our framework. For our last approximation
rule, we discuss how compactly supported kernels (Section 4.4) can
be used for parts of the computation that would otherwise be unde-
fined. As an illustrative example, in Figure 3, we show the appli-
cation of each of our approximate smoothing rules to a simple 1D
function. In this case, smoothing is applied only to the single input
dimension (x). In particular, the previous work of Dorn et al. per-
forms poorly, as shown in Figure 3, when a function changes in fre-
quency across spatial coordinates. This happens often for shaders
because of foreshortening: frequency changes occur as a texture
becomes distant from the camera.

For each atomic part of the input program, we have different op-
tions for approximations, so we use a genetic search to apply rules
to individual and connected groups of atomic parts. The search al-
gorithm finds Pareto-optimal shader variants that optimally trade
off running time and approximation error (Section 5). We also show
how we can make minor quality improvement to the resulting pro-
grams by applying denoising (Section 6).

To evaluate our framework, we applied to three geometries a va-
riety of complex shaders, including shaders with parallax mapping,
animation, and spatially varying statistics. We compare the per-
formance with Dorn et al. [DBLW15] and commonly used super-
sampling. Our framework gives a wider selection of band-limited
programs with less error than Dorn et al. [DBLW15]. Our shaders
are frequently an order of magnitude faster than supersampling for
comparable errors.

2. Related work

Mathematics and smoothing. Smoothing a function is beneficial
in domains such as optimizing non-convex or non-differentiable
objectives [Nes05, CX99, CC99]. In numerical optimization, this
approach is sometimes known as the continuation method or mol-
lification [ENW95, EN97, Wu]. In our framework, we model the
smoothing process on the input program by relating the statistics
of each variable, and apply a variety of approximations to smooth
the program. Our idea of associating a range with each interme-
diate value of a program is conceptually similar to interval anal-
ysis [M0079]. Chaudhuri and Solar-Lezama [CSL11] developed a

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

1.0 107

)

0.51

0.01

sin(z

Y

—0.51

—1.0" -1.0 -1.0

0.0 25 0.0 —25
x x
(a) Input program (b) Dorn et al. [DBLW15],

(Section 4.1)

25

0.0
x

(c) Adaptive Gaussian,
(Section 4.2)

1.0y 1.0

o 0.0 25

T T

(d) Monte Carlo sampling, (e) Compactly supported kernels,
(Section 4.3) (Section 4.4)

2.5 =25

Figure 3: A visual example of our approximate smoothing rules. (a) The input program is the function y = f(x) = sin(xz). This program is
decomposed in our framework as the composition of two atomic parts that we do know how to smooth: sin() and x2. The “ground truth"
correctly smoothed program (or function) is shown in blue dashed curves in subfigures (b-e). This is determined by a convolution that
is sampled at a very high sample rate. The orange lines in subfigures (b-e) approximate the ground truth convolution by using different
approximation rules. The dark red subplots in (b-e) give an abstract illustration of the kernels that were actually used to evaluate these.
(b) The approximation by Dorn et al. [DBLWI15] (Section 4.1); (c) Our adaptive Gaussian approximation (Section 4.2); (d) Monte Carlo
sampling approximation with 8 samples (Section 4.3); (e) Compactly supported kernels approximation: here we use a box kernel (Section 4.4).

We use a standard deviation of ¢ = 0.25 for all input distributions.

smoothing interpreter that uses intervals to reason about smoothed
semantics of programs. The homogeneous heat equation with initial
conditions given by a nonsmoothed function results in a smoothing
process, via convolution with its Green’s function, the Gaussian.
Thus, connections can be made between convolution with a Gaus-
sian and results for the heat equation, such as Lysik [Lys12].

Procedural shader antialiasing. The use of antialiasing to re-
move sampling artifacts is important and well studied in computer
graphics. The most general and common approach is to numerically
approach the band-limited signal using supersampling [AGBO0O].
Stochastic sampling [DW, Cro77] is one effective way to achieve
this. The sampling rate can be effectively lowered if it is adaptively
chosen according to the contrast of the pixel [DW, Mita, HTW*08,
Mitb]. In video rendering, samples from previous frames can also
be reused for computation efficiency [YNS*09]. An alternative to
sample-based antialiasing is to create a band-limited version of
a procedural shader. This can be a difficult task because analyti-
cally integrating the function is often infeasible. There are several
practical approaches [Ebe03] that approximate the band-limited
shader functions by sampling. This includes clamping the high-
frequency components in the frequency domain [NRS82], and pro-
ducing lookup tables for static textures using mipmapping [Wil83]
and summed area tables [Cro84].

Like our work, and unlike most other work in this area, Dorn
et al. [DBLW15] use a compiler-driven technique to approximate
a smoothing convolution by decomposing an arbitrary input pro-
gram into atomic parts that we know how to individually smooth.
Like our work, Dorn et al. use a genetic search to select between
these rules. We adapt Dorn et al. as one of the approximation rules
into our framework with two improvements: better standard devi-
ation estimates and the collection of a Pareto frontier of smoothed
programs instead of one single output program. Unlike Dorn et
al. [DBLW15], which models only mean statistics, our framework
flexibly incorporates both mean and variance statistics. We also use
several approximations that have higher accuracy, which can better
model textures that change in spatial frequency due to foreshorten-
ing.

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Heuristic search over programs. Genetic algorithms and ge-
netic programming (GP) are general machine learning strategies
that use an evolutionary methodology to search for a set of
programs that optimize some fitness criterion [Koz92]. In com-
puter graphics, Kensler and Shirley [KS] demonstrated that ge-
netic algorithms could be used to optimize ray-triangle intersec-
tion routines. Sitthi-Amorn et al. [SAMWLI11] described a GP
approach to the problem of automatic procedural shader sim-
plification. Other researchers have also investigated automatic
shader simplification by heuristic search methods that simplify pro-
grams [OKS, Pel, HFTF15], and by jointly modifying shaders and
geometry [WYY*14]. Brady and colleagues [BLPW14] showed
how to use GP to discover new analytic reflectance functions. We
use a similar approach as [SAMWLI11] to automatically generate
the Pareto frontier of approximately smoothed functions.

3. Decomposition and Associated Notation

In this section, we first explain in Section 3.1 how the input pro-
gram is decomposed into atomic parts. Next, in Section 3.2, we
define math notation associated with these atomic parts.

3.1. Decomposing the Input Program into Atomic Parts

Most input programs lack a closed-form solution for their convolu-
tion with a Gaussian kernel. We therefore decompose the compu-
tation graph into atomic parts that individually have known closed-
form solutions. We then compute approximate mean and variance
statistics for each part, and substitute the mean and variance that
are output from one group of compute nodes as the inputs for any
subsequent compute nodes.

Our compiler-based framework assumes the input program has a
compute graph, where each node represents a floating-point com-
putation, and the graph is a directed acyclic graph (DAG). This
compute graph is constructed directly by the programmer using
atomic operations such as addition, multiplication, trigonometric
functions, and others: please see the supplemental document for a
full list. We use lower-case letters such as x and y to represent real
values (scalars) in the input program. These can be either input,
output, or intermediate values. We use corresponding capital letters

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

such as X and Y to represent random variables for the distribution
of these values given that the input variables are assumed to be in-
dependently Gaussian distributed. In our implementation, although
we assume that the input variables are independent, this is not limit-
ing because dependencies such as e.g. a joint Gaussian distribution
can easily be created in the program by passing the inputs through
a linear transformation. For each node X in the computation, we
use uy to denote its mean and 0;2(for its variance. Note we use
these random variables as a helpful conceptual device to determine
statistics, but in most cases, we never actually sample from these
random variables (except for Monte Carlo sampling (Section 4.3),
which is sampled). Our compiler then carries mean and variance
computations forward through the compute graph, using the var-
ious approximate smoothing rules of Section 4, and collects the
output by taking the mean value of the output variable.

As an example, for shader bandlimiting, the input variables
are the 2D screen coordinate (u,v), with associated random vari-
ables, U and V. For the random variables, the means are the pixel
positions, yy = u, and uy = v, and the standard deviations are
oy = oy = 0.5, i.e. half a pixel, to suppress aliasing beyond the
Nyquist rate. Our compiler then gathers the mean of the output ran-
dom variables to obtain the rendered color.

3.2. Math Notation For Smoothing a Single Atomic Part

In this subsection, we define the notation we will use for smoothing
a single atomic part of a program. This can be done by either us-
ing convolutions or random variables, in two equivalent notations.
First, we note that throughout the paper, we use bold to indicate
vectors and matrices. In some cases, we might consider the case
where a random variable is scalar, which we could denote as X, and
then we might later consider the case of a random vector, which we
might similarly denote as X. To avoid confusion between these sim-
ilar symbols, in this situation we first indicate in the text whether
the variable is a scalar or vector quantity.

We now present our smoothing operator. Assume we are smooth-
ing a function f : R" — R™, which maps inputs X to outputs y. We
use the ~ operator to denote smoothing using convolution, so the
smoothed function is f'(x, Y), defined as:

f(x,Z) = (£xG)(x)

_ f(x — 4"
- (X u)G(ll,)d u (1)

= [f(u)G(x—u,X)d"u
JRro

In Equation (1), G(u,X) is the smoothing kernel that is used to
smooth the original function f(x), X is a covariance matrix asso-
ciated with the kernel (more precisely, X is the covariance matrix
of the random vector with a probability density function given by
the kernel G), and the convolution is over the first variable of each
function. To more explicitly identify the kernel as being G, we can
also use the notation ¢ (x,X). For isotropic kernels, which have the
same standard deviation & for all dimensions, we also use f(x, 02)
as shorthand for f(x,I6?), where I is the identity matrix. The con-
volution kernel G(x,X) can be any non-negative kernel that inte-
grates over R” to one. This allows us to interpret the kernel also as
a probability density function. In this paper, we frequently use the

Gaussian kernel, which we conveniently center at the origin:
1 l Ta-1)
GuY)=——exp|—=u X u 2)
= (=2

If f(x) happens to be a shader program, then as is discussed in
[DBLW15], f(x,ZX) is simply a band-limited version of the same
procedural shader function.

We now show the connection between the convolution of Equa-
tion (1) and the random variables associated with a program’s com-
putations. We assume that in the input program, an intermediate
scalar random value Y is computed by applying a scalar-valued
function f to an input random vector X (in]Rk), ie, Y = f(X).
If the probability density function of X is gx, then by the law of the
unconscious statistician, uy is:

pr =EfX)] = [f(u)sx(wid‘u)

As an example, if the input random vector X is normally dis-
tributed as X ~ A (uy, Zx), then Equation (3) becomes:

wr = [S@G(u—py Ex)d'u

= (f(u) *G(u,Ex))(px))
= f(ux, Ex)

Thus, we find that we can switch between two equivalent no-
tations. In “convolution notation," we can write py = f (px, Xx)-
This is the same as using “random variable notation" and writing
E[f(X)]. This gives some intuition for how we can either use con-
volutions or expectations of random variables to smooth programs.

4. Approximate Smoothing Rules

Using the machinery from the previous section, we can now de-
compose the input program into atomic parts, and represent these
as a directed acyclic graph (DAG). Each part accepts one or more
inputs, which are Gaussian distributed according to mean and vari-
ance statistics, and outputs a variable, which is also Gaussian dis-
tributed. This section develops different approximation rules used
to compute the mean and variance of the output variable. These
rules allow for different trade-offs between efficiency, accuracy,
and noise. The approximation rules are visualized in Figure 3.

4.1. Approximation of Dorn et al. 2015

We integrate the approximation rule described in Dorn et al.
[DBLW15] as one of our approximation options. Dorn’s rule in-
volves computing the smoothed function by convolving with a
Gaussian kernel. Suppose an intermediate scalar variable y is com-
puted from another scalar variable x, and the associated random
variables are Y and X, respectively, where Y = f(X). Then uy is:

uy = flux,0%) Q)

This is the same as the result we derived in Equation (4). Here
f(ux,0%) is computed from its definition in Equation (1). In the
supplemental document Table 3, we show commonly used func-
tions f and their corresponding smoothed functions f. This ta-
ble of commonly used functions includes polynomials, reciprocal,

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

sine, cosine, tangent, hyperbolic trigonometric functions, exponent,
Heaviside step, fract, floor, and ceiling, and the squares of these
functions. For example, if y = sin(x), and we are using a Gaussian
kernel, then we can use Equation (5) and look up in the supplemen-
tal document Table 3 to obtain uy = sin(uy) exp(—oc% /2).

In Dorn’s paper, the output Gy is determined based on the fol-
lowing simplifying assumption: output G is a linear combination of
the axis-aligned input Gs in each dimension. Simple rules are used,
such as ¢ for addition and subtraction are the sum of input s, and
¢ for multiplication or division are the product or quotient, respec-
tively, of the input os. In all other cases, including function calls,
the output G is the average of the non-zero o5 of all the inputs.

We make two improvements to Dorn et al. [DBLW15], and use
the improved variant of this approximation rule for all comparisons
in our paper. The first improvement gives better standard deviation
estimates, and the second collects a Pareto frontier. For the standard
deviations (known as “sample spacing" in Dorn et al. [DBLW15]),
we detect the case of multiplication or division by a constant and
adjust the standard deviation accordingly (i.e. 6,x = |a|ox). This
improvement helps give more accurate estimates of the standard de-
viations and thus reduces the problem seen in Dorn et al.’s Figure
5(c), where the initial program has substantially wrong variances.
Our second improvement is to collect not just a single program vari-
ant with least error, but instead a Pareto frontier of program variants
that optimally trade off running time and error. This process is de-
scribed later in Section 5.

One simple question we could ask is: for what class of func-
tions does the improved Dorn et al. [DBLW15] approximation re-
sult in the exact answer? More precisely, we could apply this rule
to a compute graph whose inputs are independently Gaussian dis-
tributed, and determine a class of functions whose compute graph
results in an exact output for the mean. Even for linear functions,
these approximation rules give incorrect variance. For example,
Dorn’s estimate gives incorrectly Var(X — X) as (20x)?, when it
should be zero. However, if a Gaussian distributed input variable
is multiplied by or added to a constant, this rule results in the cor-
rect mean and variance. Thus, this rule gives exact results for the
mean for linear combinations or separable products of functions
f(ax+ b) that we know smoothed f for, where a, b can be any con-
stants. For example, for g(x,y,z) = ((2x)? + cos(y))z? it produces
an exact result, since smoothed results are available for polynomi-
als and cosine.

4.2. Adaptive Gaussian Approximation

In this novel approximation, we model the input variables to a com-
pute node as being distributed as a multivariate Gaussian, and then
also approximate the output of the node as Gaussian by collecting
its mean and standard deviation. This rule therefore allows corre-
lations between variables to be modelled, and the variance term of
the output Gaussian to adapt, based on the inputs and the previous
computation.

Suppose that a scalar-valued random variable Y is computed
from a jointly Gaussian distributed random vector X as ¥ = f(X).
We assume we know the distribution for X ~ N (uy, £x). Simi-
larly as in Section 4.1, uy can be determined from Equation (4)
and Equation (1). The result uy can then be looked up in a table of

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

convolutions such as the supplemental document Table 3, or from
multi-dimensional formulas that we will see shortly. However, the
standard deviation oy is determined differently based on the defi-
nition of the variance of Y:

oy = E[Y?| —E[Y)?

—~ (6)
:fz(”sz)() 7.f2(”X’2X)
For this rule, we can ask, for what functions does the adaptive
Gaussian approximation rule result in the exact answer? More pre-
cisely, we could apply the adaptive Gaussian approximation rule to
compute the mean and variance of every node of a compute graph
whose inputs are independently Gaussian distributed random vari-
ables. Then we can determine a class of functions whose associated
compute graphs result in the output mean being exact. We know
that any affine transform of a multidimensional Gaussian results
in another multidimensional Gaussian. We can construct the affine
functions using the binary scalar operators (+),(—),(-), and can
calculate the mean and variance exactly for such affine functions
(using either the sampled or affine estimations for correlations that
are discussed later in this section). Thus, this approximation rule
gives exact results for the mean for linear combinations or sepa-
rable products of functions f(Ax) that we know smoothed f for,
where A is any affine transformation, and x is the vector of input
variables. For example, for g(x,y,z) = ((2x+y)? + cos(y — 2x))>
the adaptive Gaussian rule produces an exact result, since exact
smoothing results are available for polynomials and cosine.

A second question we can ask is: if the answer is not exact, to
what order is the result accurate? Suppose for simplicity that the
input variables are independent and Gaussian distributed, each with
a standard deviation of 6. By using Green’s function [BS03] on the
convolution of Equation (1) , we can find a Taylor expansion for
the function f(x,67) in terms of f(x):

1
2

1
(21)22

f(x,6%) = f(x) + 6"V f(x) + VX ... (D)

The derivation of Equation (7) assumes that f is real analytic on
R", and can be extended to a holomorphic function on C", so that
all the derivatives exist, and the Taylor series has an infinite radius
of convergence [Wik17]. This class of functions includes polyno-
mials, sines, cosines, and compositions of these. It is necessary to
assume that the function is bounded by exponentials: the precise
conditions are discussed by Lysik [Lys12]. These properties could
hold for some shader programs, but even if they do not hold for an
entire program, they often hold for program sub-parts. We show in
the supplemental document Section 13 that a single function com-
position gives a result accurate to o2 for this rule. Similarly, this
property can be proved via induction for multiple function compo-
sitions. We conclude that for functions with certain analytic prop-
erties, the adaptive Gaussian rule is accurate to o’

There are also other second order accurate approximations, such
as simply truncating the Taylor expansion in Equation (7) to use
only the first and second term. To illustrate why adaptive Gaussian
gives a more accurate approximation, we show an example in Fig-
ure 4. The truncated Taylor expansion results in amplifying high
frequencies, instead of attenuating them.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

| Nl
HITI Nl
i A Al |

1 oY N 1

(a) Input flunction (b) Adaptive‘I'Gaussian (c) Truncatéd Taylor
approximation (§4.2) expansion (Equation (7))
c=05 6=05
Figure 4: A comparison of different approximation techniques. (a)
The input function f(x) = sin(x?) + l!ﬁxz. The ground truth cor-
rectly band-limited functions f (x) are shown in blue in subfigures
(b-c). These were determined by sampling at a high sample rate. (b)
Our adaptive Gaussian approximation (Section 4.2) is shown in or-
ange and compared against the ground truth in blue. The approx-
imation is good. (c) A truncated Taylor expansion with 10 terms
does not result in smoothing.

We now explain how binary functions can be handled using this
approximation rule. Suppose a binary function f(a,b) takes scalar
inputs a,b and the associated random variables are A and B, re-
spectively. We make the assumption that A and B are distributed
according to a bivariate Gaussian:

ap~n([].[o posos ®)
’ ug|’ |poscs o3

Here, 64 and op are standard deviations of A and B. These can
be determined directly by applying the approximation rules to the
input nodes A and B. Here p is the correlation term between A and
B. We will talk about how we choose p later in this section. The
mean and standard deviation for the binary functions of addition
(A + B), subtraction (A — B) and multiplication (A - B) can be de-
rived from these assumptions based on properties of the Gaussian
distribution [PP*08]:

M(A+B) =Ha T up
G%Aj:B)

H(A.B) =HAMB +POACH

:ci + c%; +2pc,03B

)
O{a.5) =HAOB + Ol + 2PpaupOACE + G403 (14 p)

For the binary function of division, we reduce this to multiplica-
tion by using the substitution a/b=a- b~"'. The mean and standard
deviation for division can then be calculated via the composition
rules. Here, g(b) = b~ ! is an univariate function with singularity
at b = 0. Technically, the mean and variance therefore do not ex-
ist if the Gaussian kernel is used. We work around this singularity
by approximating using a compact kernel with finite support. This
will be described in detail in Section 4.4. In the supplemental Sec-
tion 10, we derive formulas for additional multivariate functions,
such as modulo, comparisons, and a ternary select function.

As we discussed before, for binary functions, we approximate
the input random variables A and B as bivariate Gaussian with cor-
relation coefficient p (Equation (8)). In general, it is difficult to
determine p, because determining p exactly involves an integral
over the entire subtrees of the computation. In our framework, we

provide three options to approximate p: (1) Assume p is zero; (2)
Assume p is a constant for each node. The constant value is es-
timated at training stage by sampling; (3) Estimate p based on a
simplified assumption that the given nodes are affine functions of
the inputs. For case (3) we simply take the gradients with respect to
the program’s input variables of the terms a and b, normalize these
gradients, and take their dot product, which recovers p. We do this
using reverse mode automatic differentiation. Note that the result-
ing p estimate for case (3) is exact if the nodes are in fact affine
with respect to the inputs, and otherwise is accurate to second or-
der in 6. We explored these different rules in our genetic search. In
practice, we find that for shader programs, using only rule (1), p =0
typically gives good results. If the other rules (2) and (3) are also in-
cluded, minor quality improvements are gained, but these rules are
used relatively rarely by our genetic search process of Section 5.
We include in the supplemental document Section 11 more details
about these other choices for correlation coefficients.

4.3. Monte Carlo Sampling

We adapt Monte Carlo stochastic sampling [Coo86, DW] to our
framework. We first collect each largest connected sub-graph of
the computation that has been specified to use Monte Carlo sam-
pling. Then we collect the inputs to the sub-graph, Xi,...,X.
These could either be input random variables to the entire input
program, or intermediate variables calculated as the output from
other parts of the compute graph. For simplicity, here we assume
these inputs are independently Gaussian distributed based on their
specified means uy, and standard deviations Cx,. For each output
f of the sub-graph that is used by later computations, we compute
the mean and standard deviation statistics of ¥ = f(X,...,Xm) by
sampled estimators:

] n
uY:i;EZfOWy+A@JGM7~wH&f+AQm°XJ
lljl (10)
> 2 7
Oy :; Zf (:qu +M,10X17"'7yxnz +M,mGXm) —Hy

Here, each N;; are random numbers independently drawn from
normal distribution A/(0,1), and n is the number of samples. We
experimented with applying the Bessel’s correction [So08] to cor-
rect the bias in variance that occurs for small sample counts n. In
practice, we found it does not have a significant improvement on
the result for our system.

The approximation converges to the ground truth for large sam-
ple numbers, and the output program simplifies to supersampling
[Coo86] when the entire input program is approximated under
Monte Carlo sampling. The error of the Monte Carlo sampling 6/
is estimated as follows [Feil 1].

Oy

oy~
L~

Here, oy is the standard deviation computed from Equation (10)
and n is the number of samples.

an

4.4. Compactly Supported Kernels Approximation

Because the Gaussian kernel has infinite support, it cannot be used
on functions with undefined regions. For example, +/x is only de-
fined on non-negative x, and its convolution with Gaussian using

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Equation (1) does not exist. However, even if an input program
contains such functions as sub-parts, the full program may have a
well-defined result, so smoothing should still be possible for such
programs. To handle this case, we use compactly supported kernels.

Results for certain compactly supported kernels can be obtained
by using repeated convolution [Hec86] of boxcar functions. This is
because such kernels approximate the Gaussian by the central limit
theorem [Wel86]. In our framework, we use box and tent kernels
to approximately smooth functions with undefined values. Because
the convolution with a box kernel is easier to compute, this ap-
proximation can also be used when the Gaussian convolution does
not have a closed-form solution. In the supplemental document Ta-
ble 3, we list smoothed results for commonly used functions using
the box kernel.

When integrating against a function that has an undefined region,
it is important to make sure that the integral is not applied at any
undefined regions. Our solution to this is to make the kernel size
adapt to the location at which the integral is evaluated at. Thus,
the integral is no longer technically a convolution, because it is
not shift-invariant. We first measure the distance r from the value
x that we are determining the integral at to the function’s nearest
undefined point. If the kernel half-width was h before re-scaling,
then we rescale the half-width to be min(/, Ar). Here A is a constant
less than one, and in practice we use A = %

We can also use this truncation mechanism to better model func-
tions such as fract(x) = x — [x|, which have many discontinuities.
Clearly, fract() is discontinuous at integer x. If we input a distribu-
tion that spans a discontinuity, such as X ~ A/(0,0.1%), into fract(),
we find the output Y = fract(X) may be bimodal, with some values
close to zero, and others close to one. If we fit a Gaussian to this
bimodal distribution, as our approximation rules propose, then the
mean would be %, which is far away from the two modes. This may
result in a poor approximation, which can show up in tiled pattern
shaders (which use fract) as a bias towards the center of the tile’s
texture. One fix would be to randomly select either mode, based on
the probability contained in each mode. However, this introduces
sampling noise. Instead, we truncate the filter at the location of
the discontinuity when the original kernel support is smaller than
a truncation constant 7} (in practice, we use 77 = 1/4). When the
original kernel support is above a larger truncation constant 7, (we
use 7> = 1/2) we do not truncate. In between kernel sizes 77 and
T, we rescale the kernel size linearly between these endpoints.

5. Genetic Search

In this section, we describe the genetic search algorithm. This au-
tomatically assigns approximation rules to each computation node.
The algorithm finds the Pareto frontier of approximation choices
that optimally trade off the running time and error of the program.

We developed this genetic search because it allows users to ex-
plore the trade-off between efficiency and accuracy of the smoothed
program. Although developers can manually assign approximation
rules, we found this to be a time-consuming process that can easily
overlook beneficial approximation combinations. This is because
the search space for the approximations is combinatoric.

Our genetic search closely follows the method of Sitthi-Amron

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

et al. [SAMWLI11]. We adopt their fitness function and tournament
selection rules, and we use the same method to compute the Pareto
frontier of program variants that optimally trade-off running time
and error with ground truth.

We start with “decent initial guesses.” For each approximation
rule, we create a program variant where the rule is applied to all the
expression nodes. For such initial guesses, we also apply single-
point cross-over. The cross-over operation partitions the program
into two parts separated by an arbitrary node, assigns approxima-
tion rules from one variant to the first part of the program, and rules
from another variant to the other part. Next, we employ cross-over
and mutation operations to explore the search space. The mutation
step chooses a new approximation rule, and with equal probabil-
ity, assigns this new rule to 1, 2, or 4 adjacent expression nodes
in depth-first order. As an alternative, with equal probability, the
new approximation rule can also be assigned to the whole subtree
of an arbitrary node. We use tournament selection to select pro-
gram variants for mutation and crossover. Our tournament selection
works by randomly sampling 4 program variants from the popula-
tion, eliminating variants that are not Pareto optimal, and then ran-
domly choosing a remaining program with optimal running time
and error.

For the Monte Carlo sampling approximation, during initializa-
tion and mutation, we select sample counts with equal probability
from the set {2,4,8,16,32}. For the determination of correlation
coefficients described in Section 4.2, we pick with equal probabil-
ity one of the three options.

6. Optional Quality Improvement

At this point, we assume we have applied the approximation rules
described in Sections 4.1 through 4.4 to an input program. We can
optionally improve the approximation quality by applying denois-
ing to program variants that use Monte Carlo sampling.

When Monte Carlo sampling is used as part of the approxi-
mation, noise is introduced because of the relatively small sam-
ple count. A variety of techniques have been developed to filter
such noise [KBS, BVM*17, RKZ]. We implement the non-local
means denoising method [BCMO05, BCM11] with Laplacian pyra-
mid [LWC*08]. We find that aesthetically appealing denoising re-
sults can be obtained using a three level Laplacian pyramid, with a
patch size of 5, search radius of 10, and denoising parameter 4 is 10
for the lower resolutions, and searched over or set by the user for
the finest resolution. In the genetic search process (Section 5), we
experimented with allowing the algorithm to search from a variety
of denoising parameters for the best result. However, because our
denoising algorithm incurs some time overhead, it ends up being
only rarely chosen. Thus, in our current setup, denoising is typi-
cally specified by the user manually choosing that he or she wants
to denoise a result.

7. Evaluation

The previous work of Dorn et al. [DBLW15] was evaluated only
on planar geometry, with relatively simple shaders. To provide a
more challenging and realistic benchmark, we authored 21 shaders
and applied these to three geometries. Unlike the simple shaders of
Dorn et al., these include shaders that have a Phong lighting model,

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Table 1: A table of our 21 shaders. At the top we list our 7 base
shaders, which are each combined with 3 different choices for par-
allax mapping, listed at the bottom. We also report the number of
non-comment lines and expressions in each program fragment.

Shader Lines | Exprs | Description

Base shaders
Bricks 38 192 | Bricks with noise pattern
Checkerboard 20 103 | Greyscale checkerboard
Circles 16 53 Tiled greyscale circles
Color circles 26 164 | Aperiodic colored circles
Fire 49 589 | Animating faux fire
Quadratic sine | 26 166 | Animating sine of quadratic
Zigzag 24 224 | Colorful zigzag pattern

Parallax mappings
None 0 0 No parallax mapping
Bumps 21 203 | Spherical bumps
Ripples 23 178 | Animating ripples

animation, spatially varying statistics, and which include parallax
mapping. For the parallax mapping, we implemented the “safer
mapping" formula from Section 4.1.4 of Szirmay-Kalos and Umen-
hoffer [SKUOS]. Our 21 shaders were produced by combining 7
base shaders with 3 choices for parallax mapping: none, bumps,
and ripples. In Table 1, we describe our base shaders, the choices
for parallax mapping, and the associated code complexity. We ap-
plied the shaders on 3 different geometries: an infinite plane and
two curved geometries sphere and hyperboloid. Each shader pro-
gram is tuned independently on each of the geometries.

We performed our evaluation on an Intel Core 17 6950X 3 GHz
(Broadwell), with 10 physical cores (20 hyperthreaded), and 64 GB
DDR4-2400 RAM. All shaders were evaluated on the CPU using
parallelization. The tuning of each shader took between 1 and 6
hours of wall clock time, with 1 to 3 hours for planar geometry.
However, we note that good program variants are typically avail-
able after minutes to low tens of minutes, and most of the remaining
tuning time is spent making slight improvements to the best indi-
viduals. Please see the supplemental Section 14 for results avail-
able after tuning for 10 minutes. Also, our tuner is intentionally
a research prototype that is not particularly optimized: it could be
significantly faster if the code generator were optimized, it was par-
allelized more effectively, cached more redundant computations, or
targeted the GPU. We found that getting the code generation and
math details right was challenging, so we only targeted CPU code
for simplicity in our prototype.

7.1. Evaluation for Planar Geometry

In this section, shaders are evaluated on an infinite plane. Results
for 7 of our shaders are presented in Figure 1 and Figure 5, in-
cluding one result for each base shader. The result for our method
was selected by a human choosing for each shader a program vari-
ant that has sufficiently low error. Dorn et al. [DBLW15] typically
cannot reach sufficiently low errors to remove the aliasing, so we
simply selected the program variant from Dorn et al. that reaches
the lowest error. The supersampling result was selected based on
evaluating supersampling program variants that use 2, 4, 8, 16, 32

samples, and selecting the one that has most similar time as ours.
Please see our supplemental video for results with a rotating camera
for all 21 shaders.

We also show in Figure 6 time versus error plots for the Pareto
frontiers associated with these 7 shaders. Note that Dorn et al. typ-
ically has significantly higher error, which manifests in noticeable
aliasing. Also note that the supersampling method frequently takes
an order of magnitude more time for equal error. Plots for all 21 of
our shaders are included in the supplemental document.

Statistics for the approximations used are presented in Table 2.
Note that a rich variety of approximation strategies are used: all
four choices for approximation are selected for different programs.
Adaptive Gaussian and Monte Carlo sampling are important when
high result quality is important but fast running time is less im-
portant, as indicated in the bottom row of Table 2. In contrast, the
Dorn et al. approximation is mainly useful when fast running time
is desired in exchange for higher error. For the correlation term
discussed in Section 4.2, when aggregated across all 21 shaders,
nearly all approximations for programs on the Pareto frontier prefer
the simple choice of p = 0. We weight each shader’s contribution
equally, and find 87% of program variants prefer p = 0, whereas
only 4% use p a constant, and 6% use p estimated based on the
affine assumption. We conclude that for shader programs, the sim-
ple choice of p = 0 in most cases suffices.

Note that our brick shader (shown in Figure 1) gives poor results
for the method of Dorn et al. [DBLW 15], while in that paper, a brick
shader with similar appearance shows good results. This is because
the brick shader in Dorn et al. [DBLW15] was implemented using
floor() functions which can each be bandlimited independently, and
then a good result is obtained by linearity of the integral. In our pa-
per, we implemented a number of shaders using the fract() function
to perform tilings that are exactly or appropriately periodic, includ-
ing the brick shader. The fract() function ends up being more chal-
lenging to bandlimit for the framework of Dorn et al. [DBLW15],
but our method can handle such shaders.

7.2. Evaluation for Curved Geometry

In this section, shaders are evaluated on two curved geometries:
sphere and hyperboloid. Variables such as surface normal have
more complicated distributions on curved geometries, while in pla-
nar geometry (Section 7.1), they are just constants. Because of this,
shaders are tuned separately on each of the geometries.

Results for 7 of the shaders are presented in Figure 7, including
one result for each base shader. The program variant shown in the
result is chosen the same way as in Section 7.1. Please see our
supplemental video to see these shaders rendered from a moving
camera.

7.3. Geometry Transfer

We also performed some preliminary experiments related to geom-
etry transfer. We wondered whether shaders trained on one geom-
etry A when transferred to another geometry B would be compet-
itive with directly training on geometry B. We found that trans-
ferring shaders between the two curved geometries generally gave

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Ground Truth Our Result Dorn et al. 2015 Supersampling

No Antialiasing

Checkerboard
with Ripples
AW
W

Circles
with None

20 ms, L? error: 0.148 71 ms (4x), L2 error: 0.035 39 ms (2x), L2 error: 0.063 67 ms (3x), L2 error: 0.087

37 ms, L? error: 0.098 149 ms (4x), L2 error: 0.039 56 ms (2x), L2 error: 0.079 112 ms (3x), L2 error: 0.061

Color Circles
with Bumps

. Fire
with Ripples with Bumps

Quadratic Sine

Zigzag
with Ripples

57 ms, L? error: 0.139 77 ms (1x), L2 error: 0.045 59 ms (1x), L2 error: 0.072 83 ms (1x), L2 error: 0.122

Figure 5: Selected result images for 6 shaders on an infinite plane. Please see the supplemental video for a comprehensive comparison of
all shaders. Reported below each shader are the time to render a frame, time relative to no antialiasing, and L? error. Please zoom in to see
aliasing and noise patterns in the different methods. Program variants with comparable time were selected: see Section 7.1 for more details.
Note that the amount of aliasing and error for our result is significantly less than Dorn et al. [DBLWI15]. We typically have significantly
less error and noise than the comparable supersampled results. Note also that for supersampling, the times relative to no antialiasing do
not exactly match the sample count due to cache effects and variations in the running time depending on exactly where samples intersect
geometry.

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

{

—+— Ours [
—+— Dometal. 2015
+— Supersampling
« No Antialiasing

30

w
)
w
8

Relative Time
Relanve;lme
Relative Time
Relative Time

d

. -
R Y
01s o020 Qoo 005 010 o015 o020 Qoo 005

Qoo 005 015 020 Qoo o005

Bricks
with None

Checkerboard
with Ripples

Circles
with None

0.10 0.10 0.
L2 Error L2 Error L2 Error L2 Error
Color Circles Fire
with Bumps

w
&
w
&8
w
38

N
S
N
S
N
S

Relative Time
Relative Time
Relative Time

5
S
S

e
015 020 Qo0 005 010 015 o02c Qoo 005 o010 015 o020 oo 005 010 015 0.20
L2 Error L2 Error L2 Error

Quadratic Sine
with Ripples

Zigzag

with Bumps with Ripples

Figure 6: Time versus error plots for planar geometry and the 7 shaders in Figure 1 and Figure 5. Here we show the Pareto frontier of
program variants that optimally trade off running time and L? error. We show results for our method, Dorn et al [DBLW15], supersampling
with varying numbers of samples, and the input shader without antialiasing. Note that our approach typically has significantly less error
than Dorn et al [DBLW15] and is frequently an order of magnitude faster than supersampling for comparable error.

Table 2: Statistics of which approximations were chosen for differ-
ent shaders on an infinite plane. We show statistics for the 7 pro-
gram variants for the shaders presented in Figure 1 and Figure 5.
We also show aggregate statistics over all 21 shaders, with each
shader’s contribution weighted equally. For the aggregate statis-
tics we report statistics from the entire Pareto frontier, as well as
for each shader choosing only the slowest, fastest, or median speed
program variant. Our results show that a rich variety of our differ-
ent approximation rules are needed for the best performance.

Shader Dorn et al. |Adaptive|Monte Carlo|None
[DBLW15]|Gaussian| Sampling

Bricks w/ None 28% 0% 30% 29%
Checkerboard w/ Ripples 66% 34% 0% 1%
Circles w/ None 4% 21% 71% 4%
Color Circles w/ Bumps 8% 47% 44% 0%
Fire w/ Bumps 1% 7% 33% 60%
Quadratic sine w/ Ripples 13% 80% 0% 8%
Zigzag w/ Ripples 0% 91% 1% 8%

All shaders (Pareto frontier)] 29% 15% 25% 30%
All shaders (fastest time) 13% 10% 0% T7%
All shaders (median time) 20% 19% 49% 13%
All shaders (slowest time) 10% 27% 49% 14%

good results for antialiasing that are competitive with direct train-
ing, transfer from curved geometries to plane tended to give good
antialiasing results that are slower (due to optimizations made by
the genetic search for the plane having a constant tangent, normal,
binormal frame), and transfer from plane to curved geometry gave
bad results (due to lack of diversity of training data for the frame).
Please see the supplemental Section 15 for more details and results.

8. Discussion and Conclusion

Our approach has a number of important limitations. First, it can
be forced to resort to Monte Carlo sampling especially if the in-
put program has many discontinuities. When the other approxima-
tions are used, and the results are not exact, there can be small
amounts of residual aliasing or biases. This is a limitation of as-
suming that distributions are Gaussian when they are not. For the

curved geometries, we noticed that highly aliased regions are ex-
posed for just a small percent of the pixel count, so this can cause
the genetic search to focus more on areas with less aliasing. Future
work might address this by diversely sampling from regions with
different amounts of aliasing. We also do not currently handle tex-
ture, lookup tables, nor do we target the GPU. Although we sample
across the time domain during the genetic search, we do not cur-
rently use any loss that discourages temporal aliasing, so there may
be small amounts of temporal aliasing. Further, we currently han-
dle conditionals in a limited manner by executing both branches, as
we do for the select() function in the supplemental document Sec-
tion 10, but future work could more comprehensively address con-
ditionals. Finally, our genetic search algorithm may not be efficient
enough for more complicated production shaders. Future work on
static selection of approximation rules would be necessary to scale
to significantly longer shaders.

In summary, in this paper, we presented a novel compiler frame-
work that smoothes an arbitrary program over the floats by con-
volving it with a Gaussian kernel. We explained several differ-
ent approximations and discussed the accuracy of each. We then
demonstrated that our framework allows shader programs to be
automatically bandlimited. This shader bandlimiting application
achieves state-of-the-art results: it often has substantially better er-
ror than Dorn et al. [DBLW15] even after our improvements, and
is frequently an order of magnitude faster than supersampling. Our
framework is quite general, and we believe it could be useful for
other problems in graphics, mathematics, and other disciplines. In
order to facilitate reproducible research, we intend to release our
source code under an open source license.

Acknowledgements

We thank Zack Verham for authoring some shaders, Ning Yu for
helping produce the supplementary video, and Francesco Di Plinio
for providing references about the heat equation and its Taylor ex-
pansion. This project was partially funded by NSF grants HCC
1011444 and SHF 1619123.

References

[AGB00] APODACA A. A., GRITZ L., BARZEL R.: Advanced Render-
Man: Creating CGI for motion pictures. Morgan Kaufmann, 2000. 3

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

Ground Truth No Antialiasing Our Result Dorn et al. 2015 Supersampling

»

Bricks
with None
on Hyperboloid

1215 ms (1x), 12 error: 0.016 1080 ms (1x), 12 error: 0.052 1897 ms (2x), 12 error: 0.051

1094 ms, L2 error: 0.055

S 4

>3

3333

M

&

on Hyperboloid
(S3338

»

Checkerboard
with None

A A A W
130 ms (3x), L2 error: 0.025 123 ms (3x), L2 error: 0.046 108 ms (2x), L? error: 0.069

IO ONN

08 LIIN
10000

. Circles
with Ripples
on Sphere

29 ms, L? error: 0.081 195 ms (7x), L2 error: 0.023 64 ms (2x), L2 error: 0.072 242 ms (8x), 12 error: 0.040

Color Circles
with None
on Sphere

32 ms, L? error: 0.028 110 ms (3x), L2 error: 0.007 90 ms (3x), L? error: 0.009 132 ms (4x), L? error: 0.021

. Fire
with Bumps
on Sphere

243 ms (6x), L? error: 0.096

Quadratic Sine
with Ripples
on Sphere

202 ms (7x), L? error: 0.065

Zigzag
with None
on Hyperboloid

74 ms, L? error: 0.058

Figure 7: Selected result images for 7 shaders on curved geometries. Please see the supplemental video for these shaders with a moving
camera. Reported below each shader are time to render a frame, time relative to no antialiasing, and L? error.

(© 2018 The Author(s)
Computer Graphics Forum (© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Y. Yang & C. Barnes / Approximate Program Smoothing Using Mean-Variance Statistics, with Application to Procedural Shader Bandlimiting

[AMHHO8] AKENINE-MOLLER T., HAINES E., HOFFMAN N.: Real-
time rendering. CRC Press, 2008. 1

[BCMO5] BUADES A., COLL B., MOREL J.-M.: A non-local algo-
rithm for image denoising. In Computer Vision and Pattern Recognition,
2005. CVPR 2005. IEEE Computer Society Conference on (2005), vol. 2,
IEEE, pp. 60-65. 7

[BCM11] BUADES A., COLL B., MOREL J.-M.: Non-local means de-
noising. Image Processing On Line 1 (2011), 208-212. 7

[BLPW14] BRADY A., LAWRENCE J., PEERS P., WEIMER W.: gen-
brdf: Discovering new analytic brdfs with genetic programming. ACM
Transactions on Graphics (TOG) 33,4 (2014), 114. 3

[BSO3] BAKER M., SUTLIEF S.: Green’s functions in physics version 1.
5

[BVM*17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVAK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
predicting convolutional networks for denoising monte carlo renderings.
ACM Transactions on Graphics (TOG) 36, 4 (July 2017). 7

[CC99] CHEN B., CHEN X.: A global and local superlinear continuation-
smoothing method for p 0 and r O ncp or monotone ncp. SIAM Journal
on Optimization 9, 3 (1999), 624-645. 2

[Coo86] CoOK R. L.: Stochastic sampling in computer graphics. ACM
Trans. Graph. 5, 1 (Jan. 1986), 51-72. URL: http://doi.acm.
org/10.1145/7529.8927,d0i1:10.1145/7529.8927. 6

[Cro77] CrRow F. C.: The aliasing problem in computer-generated
shaded images. Communications of the ACM 20, 11 (1977). 1,3

[Cro84] CRrow F. C.: Summed-area tables for texture mapping. ACM
SIGGRAPH computer graphics 18, 3 (1984), 207-212. 2,3

[CSL11] CHAUDHURI S., SOLAR-LEZAMA A.: Smoothing a program
soundly and robustly. In International Conference on Computer Aided
Verification (2011), Springer, pp. 277-292. 2

[CX99] CHEN B., X1U N.: A global linear and local quadratic noninte-
rior continuation method for nonlinear complementarity problems based
on chen—mangasarian smoothing functions. SIAM Journal on Optimiza-
tion 9, 3 (1999), 605-623. 2

[DBLW15] DORN J., BARNES C., LAWRENCE J., WEIMER W.: To-
wards automatic band-limited procedural shaders. In Computer Graph-
ics Forum (2015), vol. 34, Wiley. 1,2, 3,4,5,7,8,9, 10

[DW] DipPE M. A., WoLD E. H.: Antialiasing through stochastic sam-
pling. ACM Siggraph Computer Graphics 19, 3. 2,3, 6

[Ebe03] EBERT D. S.: Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003. 3

[EN97] ERMOLIEV Y. M., NORKIN V. I.: On nonsmooth and discontin-
uous problems of stochastic systems optimization. European Journal of
Operational Research 101, 2 (1997), 230-244. 2

[ENW95] ERMOLIEV Y. M., NORKIN V. I., WETS R. J.: The minimiza-
tion of semicontinuous functions: mollifier subgradients. SIAM Journal
on Control and Optimization 33, 1 (1995), 149-167. 2

[Feill] FEIGUIN A.: Monte carlo error analysis, 2011. [Online;
accessed 22-May-2017]. URL: https://www.northeastern.
edu/afeiguin/phys5870/phys5870/node71.html. 6

[Hec86] HECKBERT P. S.: Filtering by repeated integration. In ACM
SIGGRAPH Computer Graphics (1986), vol. 20, ACM, pp. 315-321. 7

[HFTF15] HEY., FOLEY T., TATARCHUK N., FATAHALIAN K.: A sys-
tem for rapid, automatic shader level-of-detail. ACM Transactions on
Graphics (TOG) 34, 6 (2015), 187. 3

[HIW*08] HACHISUKA T., JAROSZ W., WEISTROFFER R. P., DALE
K., HUMPHREYS G., ZWICKER M., JENSEN H. W.: Multidimensional
adaptive sampling and reconstruction for ray tracing. In ACM Transac-
tions on Graphics (TOG) (2008), vol. 27, ACM, p. 33. 2,3

[KBS] KALANTARI N. K., BAKO S., SEN P.: A machine learning ap-
proach for filtering monte carlo noise. ACM Trans. Graph. 34. 7

[Koz92] KozA J. R.: Genetic programming: on the programming of com-
puters by means of natural selection, vol. 1. MIT press, 1992. 3

[KS] KENSLER A., SHIRLEY P.: Optimizing ray-triangle intersection via
automated search. In Interactive Ray Tracing, IEEE Symp., 2006. 3

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRE P.: Pro-
cedural noise using sparse gabor convolution. In ACM Transactions on
Graphics (TOG) (2009), vol. 28, ACM, p. 54. 2

[LWC*08] LiuY.-L., WANGJ., CHEN X., GUO Y.-W., PENG Q.-S.: A
robust and fast non-local means algorithm for image denoising. Journal
of computer science and technology 23, 2 (2008), 270-279. 7

[Lys12] LYSIK G.: Mean-value properties of real analytic functions.
Archiv der Mathematik 98, 1 (2012), 61-70. 3, 5

[Mita] MITCHELL D. P.: Generating antialiased images at low sampling
densities. In ACM SIGGRAPH 1987, vol. 21. 2,3

[Mitb] MITCHELL D. P.: Spectrally optimal sampling for distribution ray
tracing. In ACM SIGGRAPH 1991, vol. 25. 2,3

[Moo79] MOORE R. E.: Methods and applications of interval analysis.
SIAM, 1979. 2

[Nes05] NESTEROV Y.: Smooth minimization of non-smooth functions.
Mathematical programming 103, 1 (2005), 127-152. 2

[NRS82] NORTON A., ROCKWOOD A. P., SKOLMOSKI P. T.: Clamp-
ing: A method of antialiasing textured surfaces by bandwidth limiting in
object space. In ACM SIGGRAPH (1982), vol. 16, ACM, pp. 1-8. 2,3

[OKS] OLANO M., KUEHNE B., SIMMONS M.: Automatic shader level
of detail. In Proceedings of 2003 ACM SIGGRAPH/EUROGRAPHICS
Conf. on Graphics Hardware. 3

[Pel] PELLACINI F.: User-configurable automatic shader simplification.
In ACM Transactions on Graphics 2005, vol. 24. 3

[PP*08] PETERSEN K. B., PEDERSEN M. S., ET AL.: The matrix cook-
book. Technical University of Denmark 7 (2008), 15. 6

[RKZ] ROUSSELLE F., KNAUS C., ZWICKER M.: Adaptive rendering
with non-local means filtering. ACM TOG 2012, vol. 31, 6. 7

[SAMWLI11] SITTHI-AMORN P., MoDLY N., WEIMER W.,
LAWRENCE J.: Genetic programming for shader simplification.
ACM Transactions on Graphics (TOG) 30, 6 (2011), 152. 3,7

[SKUO8] SzZIRMAY-KALOS L., UMENHOFFER T.: Displacement map-
ping on the gpu — state of the art. In Computer Graphics Forum (2008),
vol. 27, Wiley Online Library, pp. 1567-1592. 8

[So08] So S.: Why is the sample variance a biased estimator? Griffith
University, Tech. Rep., 09 (2008). 6

[Wel86] WELLS W. M.: Efficient synthesis of gaussian filters by cas-
caded uniform filters. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2 (1986), 234-239. 7

[Wik17] WIKIPEDIA: Entire function, 2017. [Online; accessed 2017-05-
20]. URL: http://bit.1ly/2DLtkm9. 5

[Wil83] WILLIAMS L.: Pyramidal parametrics. In Acm siggraph com-
puter graphics (1983), vol. 17, ACM, pp. 1-11. 2,3

[Wu] WU Z.: The effective energy transformation scheme as a special
continuation approach to global optimization with application to molec-
ular conformation. SIAM Journal on Optimization, 1996 6, 3. 2

[WYY*14] WANG R., YANG X., YUAN Y., CHEN W., BALA K., BAO
H.: Automatic shader simplification using surface signal approximation.
ACM Transactions on Graphics (TOG) 33, 6 (2014), 226. 3

[YNS*09] YANG L., NEHAB D., SANDER P. V., SITTHI-AMORN P.,
LAWRENCE J., HOPPE H.: Amortized supersampling. In ACM Trans-
actions on Graphics (TOG) (2009), vol. 28, ACM, p. 135. 3

(© 2018 The Author(s)
Computer Graphics Forum (©) 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/7529.8927
http://doi.acm.org/10.1145/7529.8927
http://dx.doi.org/10.1145/7529.8927
https://www.northeastern.edu/afeiguin/phys5870/phys5870/node71.html
https://www.northeastern.edu/afeiguin/phys5870/phys5870/node71.html
http://bit.ly/2DLtkm9

